THE UNIVERSITY OF

MELBOURNE

CAPSTONE PROJECT

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Final Report

MSP Telecommunications Team

Project Title: MSP Telecommunications Team
Identifier: SS5

Date: June 15, 2016

Student Workers: Joseph McKee, 541124

Fan Ren, 668268
Callum Maltby, 539190
Kainan Ma, 672453
Academic Supervisor: Professor Stan Skafidas
Professor Jonathan Manton
Associate Professor Margreta Kuijper
Academic Examiner: Associate Professor Margreta Kuijper

Version: v1.0 Final, June 15, 2016

Executive Summary

This Capstone project begins the design of a novel telecommunications system for the CubeSat under construction
by the Melbourne Space Program (MSP). The project produced a flexible and adaptive system that is capable
of implementing different modulation formats, operating at different centre frequencies, with adaptive bandwidths
for variable deployment and orbital altitude. These qualities ensure that the system achieves its stated purpose
of reliably transmitting as much data between the satellite and Earth as possible. With such a broad scope and
relatively few precise specifications, it was left to the authors to make tradeoffs and optimise the system as they

saw fit.

A new type of inflatable antenna was designed to provide 13dBi of antenna gain and an increase in data rate
of up to 150 times over comparable technologies. Much of the difficulty inherent to this project resulted from
that fact: while the power constraints are similar to comparable systems, the computational load is significantly
higher. This report conducts a power budget and link budget feasibility study and describes the design methods
and findings of the project. The selection of OFDM and its associated advantages is explored, plus the method for
selecting the baseband processor (BBP) and the analog front end (AFE). Central to this project was the design and
implementation of the baseband operations on a TS201S TigerSHARC DSP in addition to the analog carrier-band
operations conducted on the AFE. Additional work on antenna design, legal considerations and project integration

is also included. Future work is also described to provide a rough scope for subsequent Capstone or FYP members.

This report concludes that meeting the desired system specification is feasible and describes an evaluation board

representation of the system for demonstration.

Acknowledgements

The authors would like to acknowledge the contributions of Professor Stan Skafidas, Professor Jonathan Manton
and Associate Professor Margreta Kuijper to this project. Thanks must be extended to our industry advisor, Mr Les
Davey, who has provided enormous guidance on working with the ACMA. Special thanks must also go to Analog

Devices and Xilinx for their donation of all our evaluation boards.

In addition, the authors would like to thank the students from the 2015 and 2016 University of Melbourne Electrical
& Electronic Engineering Capstone Projects, and members of the Melbourne Space Program (MSP). Without the
support from such a committed group of people, or its exciting application, this project would not have been

possible.

ii

Abbreviations

ACMA - Australian Communications and Media Authority
ACS - Add, Compare, Select
ADC - Analog to Digital Converter
AGC - Automatic Gain Control
AFE - Analog Front End
ALU - Arithmetic Logic Unit
BBP - Baseband Processor
BER - Bit Error Rate
BPSK - Binary Phase Shift Keying
CFOE - Coarse Frequency Offset Estimation
CLU - Communications Logic Unit
COTS - Commercial, Off The Shelf
CPp - Cyclic Prefix
DSP - Digital Signal Processor
FEQ - Frequency Equalisation
FPGA - Field Programmable Gate Array
FMC - FPGA Mezzanine Card
FFT - Fast Fourier Transform
HPA - High Power Amplifier
TALU - Integer Arithmetic Logic Unit
ICI - Inter Subcarrier Interference
ISS - International Space Station
ITU - International Telecommunication Union
ITU-RR - ITU Radio Regulations
IQ - In-phase and Quadrature
LNA - Low Noise Amplifier
LVDS - Low Voltage Differential Signalling
PSAM - Pilot Symbol Assisted Modulation
OFDM - Orthogonal Frequency Division Multiplexing
SDR - Software Defined radio
SMA - SubMiniature version A
SNR - Signal-to-noise Ratio
THR - Trellis History Register
TT&C - Telemetry, Tracking and Command
VDSP++ - Analog Device’s DSP Simulation Environment

iii

Contents

1 Project Overview

1.1 System Purpose.
1.2 Existing CubeSats
1.2.1 QB50 nano-satellite initiative
122 BLUESat
1.2.3 MIT CubeSats
1.24 NASA Nodes

1.2.5 Commercial solutions to CubeSat telecommunication
1.3 OFDM Overview o i
1.4 Physical Constraints

2 Feasibility Study

2.1 Power Budget L
2.2 Link Budget L.
2.2.1 Overview
222 Details.
2.2.3 Achievable Bit Rates
224 Future Work oo

3 Specifications

3.1 OFDM Simulation
3.1.1 Bit Error Rate in BPSK OFDM
3.1.2 Simulink OFDM Model

3.2 System Modes L.

3.3 Offline system demonstration

4 Hardware Proposal

4.1 Original Requirements for Hardware
4.2 Analog Front End proposal
4.3 Base-band Processor proposal
4.3.1 DSP and FPGA comparison.
4.3.2 DSP ADSP-TS201S
4.3.3 Cyclebudget,
4.4 Hardware sponsorship

5 Baseband Digital System Design
5.1 Physical Layer Base-band Architecture

iv

10
10
10
14
15

16
16
16
16
19
19

21
21
22
23
23
24
26
27

28

5.1.1 Data Flow e e e e e e 28

5.1.2 Data Format e 30

5.1.3 Inter-module rate mismatch and latencyo o o oL 31

5.2 Encoding Scheme e 32
5.2.1 Outline e 32
5.2.2 Encoder implementation L. 34
5.2.3 Decoder implementation Lo 35
5.2.4 Coding Gain L e 40

5.3 Interleaver and Deinterleaver L 41
5.3.1 Outline 41
5.3.2 Imterleaving solution L 42

5.3.3 Implementation L e 42

5.4 BPSK Mapper and Demapper 44
5.4.1 Pilot Subcarriers 44
54.2 Pad Bits. o e 45
5.4.3 BPSK Modulation e 46
5.4.4 Binary32 L 46
5.4.5 Demapper Lo e e e e 47

5.5 OFDM modulator and demodulator 47
5.5.1 FFT optimization in DSP 47
5.5.2 IFFT implementation using FFT structure 50

5.6 Cyclic Prefix o e 52
5.7 Automatic Gain Control 53
5.8 Synchronisation (Schmidl’s Method) L 53
5.8.1 Timing Recovery e 53
5.8.2 Frequency Offset 56

5.9 Frequency Equalization 59
5.9.1 Outline e 59
5.9.2 Implementation and proposal Lo 60

5.10 Optimising Code oL e e 61
6 Analog Front End 62
6.1 Required Hardware and Software Tools. 62
6.2 MATLAB Implementation e 63
6.3 Determining Start of Transmission L L L 65
6.4 Automatic Gain Control L 65
6.5 Future Work L L e 66
7 RF Antenna Design 67

7.1 Motivating the Inflatable Antenna

7.2 Primary Specifications L
7.3 Overview of high gain antenna topologies
7.3.1 Fromtal feeder parabolic
7.3.2 Cassegrain parabolic L
7.3.3 Gregorian parabolic Lo e
7.3.4 Helical and Yagi-Uda Antennas
7.4 Design Methodology e
7.4.1 Design Cost Analysis e
7.4.2 Cassegrain Design oL e e
7.5 Results. o e
7.6 Future Work e

Spectrum Allocation

8.1 OVErview
8.2 Service classification e
8.3 Summary of the table of frequency allocations o oo
8.3.1 Coordination
8.3.2 Embargoes
8.3.3 Selection of frequencies
8.4 Amateur radio compliance

Project Management and Satellite Integration
9.1 Team Responsibilities e

9.2 Inter-team communication L

10 Testing and Results

10.1 Simulation o e e e e e e e e e e e e

10.2 Hardware Verification o 0 0 o e e e

11 Conclusion

A Supplementary Figures

B DSP Code

C MATLAB Code

C.1 AFE Driver o
C.2 Coding Scheme Simulator and Data Extraction
C.3 Antenna Ray Tracing e

vi

81
81
81
81
82
82
83
83

84
84
84

85
85
85

89

94

List of Figures

© 00 N O Ot s W N

T e e T e T e T S S SOt
O J O Ut kxR W N = O

19
20

21
22
23
24
25
26
27
28

29
30
31
32
33

CubeSat with the parabolic reflector rendering [1] oL 2
OFDM subcarriers [2] e 5
The stepped bandwidths for various received power Lo L Lo 5
PARP likelihood curves [3] o . e 11
Tropospheric losses due to HoO and Oz absorption [4] 13
BER vs. SNR curve for BPSK-modulated OFDM, assuming no ICI. 14
Simulation OFDM BER vs theoretical OFDM BER 17
The top layer of MATLAB Simulink model 17
Spectrum of 5MHz OFDM profile 18
Spectrum of 625kHz OFDM profile 18
Offline data path 0 19
General hardware proposal, indicating the logical separation of BBP and AFE chips. 22
The block diagram of AD9364 [5] 23
The hardware architecture of the AD TS201-S as illustrated in the programming reference manual [6]. 25
Interconnections of the high level base-band system architecture. 28
Frame format of the data passed through the link L. 29
The established data-types of each algorithm, for the purposes of optimisation and clarity. 31

Use of ping pong buffer memory structures to decouple the inputs and outputs of various data-flow

WiFi convolutional encoder topology, with constraint length k=71[7]. 32

The deinterleaver module also must be compatible with any changes to the data-type made by the

mapper for the Viterbi decoder. 33
The implemented & = 4 convolutional encoder. 34
Tllustration of an optimised 32-bit encoder algorithm. L. 34
The available trellis structure as presented by Analog Devices in the Programming Reference [6]. . . 36
A re-ordered Viterbi trellis diagram. 38
The field logic ACS function used by the TigerSHARC to update Viterbi path metric data. 39
Tustration of the location of the state variables in the inputs of the ACS structure. 39
State structure employed in C for the trace-back routine. 40

BER performance of the uncoded OFDM channel, and soft-decision and hard-decision coded channels.

This model assumes no inter-subcarrier interference, and has thus been simulated as a BPSK system. 41

Illustration of an interleaver counteracting channel burst errors. 42
Cycle-efficient interleaving to an arbitrary bit-depth 2¥. 43
Subcarrier Frequency Allocation [7] L 44
Transmit spectrum mask for 5 MHz transmission [7] L L. 45
Subcarriers locations after frequency shift o oo 45

vii

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
%)
o6

o7
a8
59
60
61
62
63
64
65
66

67

BPSK Constellation [7] o 46

IEEE754 Single-precision floating-point format (Binary32) [8] 47
standard 16 point FFT structure [9] 48
re-organized 16 point FFT structure [9] L 50
IFFT calculation by using FFT e 51
Inter-symbol interference caused by symbol 1’s delay [10]. 52
The cyclic prefix introduced into symbols [11] oo Lo L 52
The AGC FSM o 54
The AGC FSM o o e e e 55
The accumulated multiplication of timing metric oo oL 56
Timing recovery flow chart e 57
The accumulated multiplications of the timing metric 58
Frequency offset correction flow chart 59
AD9364 evaluation board top and bottom [12] Lo Lo L 62
Zedboard image [13] 63
Zyng-7000 chip architecture [14] e 64
OFDM Reception Simulink model 66
Tllustration of a frontal feed antenna. L L 68
Ilustration of a Cassegrain antenna. e e 69
Ilustration of a Gregorian antenna. L L e 70
CAD model of inflatable antenna [1] L o 71
A diagram of the variables used to create a complete parametric analysis of the antenna geometry. . 73

The MATLAB GUI environment, indicating the tunable design parameters and the generated antenna

GEOMELTY. L 75
Routine for geometric verification by ray tracing. oL 75
Definition of coordinate systems required to establish 2D cuts. 76
The MATLAB routine employed to generate the 3D cuts. 77
One of N cuts required to achieve both the paraboloid geometry (left) and ellipsoid geometry (right). 77
The first inflatable antenna prototype of geometry. Lo oo, 78
Parabolic reflector power densities at 5.66GHz o 79
Received Spectrum with significant interference Lo 85
Received Spectrum without interferenceo oL 86
Experimental and Simulated BER curves o 87

The OSI model for abstracting telecommunication systems. The green layers will be implemented on
the CubeSat, but the orange layers are not required. 94

A latency description of the software data-pass. L 95

viii

List of Tables

1 OFDM specification e e
2 Telecommunications board power budget during RF transmission
3 Link budget gains and attenuation terms.o Lo
4 Downlink received signal powers calculated by the link budget
5 Data rates from link budget L
6 DSP and FPGA comparison e
7 Overall clock budget analysis
8 Clock budget estimations for major transmitter functions.
9 Clock budget estimations for major receiver functions.
10 A table of branch metrics for possible binary input pairs and trellis outputs.
11 32-bit words containing the four 8-bit values, y; through 4, concatenated left-to-right.
12 BPSK encoding table. L e
13 BPSK encoding table.
14 FFT operations in a single butterfly
15 Optimized FFT operations for two butterflies in parallel
16 Total clock cycles used in the transmitter data~pass.
17 Total clock cycles used in the receiver data-pass. o oL
18 The primary requirements of the antenna design. L oL
19 The design incentives of each topology for each of the primary requirements.
20 Weightings assigned to each primary design requirement. oL
21 Total design incentive after the design weightings were applied to each of the antennas.
22 Summary of available bandwidths, classifications, link-type, and possible application complications. .

ix

1 Project Overview

1.1 System Purpose

In late 2014, a group of engineering students came together to form the University of Melbourne Space Program.
Today, this group has expanded to over 100 undergraduate and masters students dedicated to a single purpose: to
launch a satellite into space 600km above the surface of the earth. In order to accelerate development time, the
satellite will be built to a CubeSat form-factor, where the satellite fits within a 100mm cube and weighs approxi-
mately 1kg. The students are segmented into teams, each overseeing an element of the design, where the four major
categories are flight systems, flight vehicle, operating systems and telecommunications. All members within the
this Capstone group are considered senior members of the telecommunications team. Some 2015 Capstone projects
have already been conducted on the CubeSat project, the most notable of which designed a control system for the
radio-telescope atop Redmond Barry. With issues of spectrum allocation and future satellite goals initially undevel-
oped, it was imperative that this Capstone designs a flexible telecommunications system, capable of implementing
different system modes and modulation schemes, operating at different centre frequencies over different bandwidths
while remaining compatible at different orbital altitudes. This is to ensure the reliable transmission of as much

data between the satellite and Earth as possible.

Projects in this space are becoming increasingly common in graduate engineering courses around the world. Many
nano-satellite missions serve as educational tools; a way for students to apply the theory that they have learnt
at university. Many CubeSats communicate using simple high beamwidth, low gain half-wave dipole [15] antenna
systems, which often contribute antenna gains of =~ 1.5dBi. This in turn necessitates slow data transmission speeds,
since each data bit must be asserted for a relatively long period in order for the bit energy to rise above the noise
floor. Because of this, many CubeSats only achieve maximum data rates of 10kbps, resulting in little over 1MB

transmitted per day [16].

The telecommunication system outlined in this report addresses this slow data rate, and radically differs from any
system on a comparable satellite. This is due to the inclusion of an inflatable antenna, as shown in Figure 1.
Conceptually, sublimating benzoic acid is used to expand a metalized balloon which forms a parabolic reflector to
focus the RF power to within a 3dB full-beamwidth of 10° at 5.83GHz. This increases the received power and
contributes a satellite antenna gain of 13dBi. The symbol period can be considerably shorter than for existing
satellites while still meeting the same signal-to-noise ratio (SNR), which allows the system to transmit at data rates

of up to 1.45MBits/sec, dramatically increasing our average data throughput to 237MBytes per day.

This increased data rate places strains on the telecommunication system that comparable systems are not burdened
with: the baseband processor (BBP) chip must perform its algorithms significantly faster than similar systems.
In order to meet these requirements, a powerful BBP is required: the TigerSHARC ADSP-TS201S is clocked at
500MHz and has an instruction set architecture (ISA) that allows a clock cycle budget to be met. Meeting this

Figure 1: CubeSat with the parabolic reflector rendering [1]

clock cycle budget is critical for real-time system operation.

As such, the deliverable outcome of this project is an evaluation board representation of the final system. The
system also has to be capable of operating high data rate modes for the primary and secondary communication
systems, and a high reliability mode for telemetry, tracking, and command (TT&C). The chips used will be the same,
and the algorithms written will be transferable; the evaluation stage serves as a not only a proof-of-concept, but a
development platform for future work. Once this system is demonstrated to be functional, the MSP can take the
design and build on it to produce flight-ready PCBs. Combined with the rest of the satellite, these will fill a presently
untapped sector of the satellite telecommunications industry. Affordable and low data rate satellites are already
available in commercial and educational contexts and expensive satellites with enormous throughput capabilities
already exist, but the middle ground is under-resourced. There exist a range of applications which cannot justify
purchasing large existing satellites but require a data rate greater than existing CubeSats can provide [16]. These
can be as diverse as extending universal internet coverage, real-time imaging and performing scientific measurements

for CSIRO.

1.2 Existing CubeSats

There are few student initiatives in Australia that involve ground-up design of a CubeSat, and of those none have
the intention of launching the built satellite. However, there are many universities world-wide who have launched
CubeSats both as proof-of-concepts and to host payloads. This section will briefly overview a few relevant satellite

initiatives.

1.2.1 QB50 nano-satellite initiative

The QB50 mission is the European Union’s initiative to launch a fleet of 50 CubeSats from countries world-wide.
Australia currently has three universities partaking in the mission, with researchers from the University of South
Australia, the University of New South Wales and the University of Sydney each contributing a unique payload
that can be integrated into the satellite constellation. The QB50 initiative promotes payloads in atmospheric

measurements, bush-fire detection and imaging of the earth’s surface.

1.2.2 BLUESat

BLUESat are a University of New South Wales student group who are developing a 2U satellite for self-education
purposes. BLUESat have been affiliated with the MSP team and, since MSP’s conception, have been very helpful
for sharing system insights. BLUESat’s CubeSat will not be launched into space, however their current design
endorses a low-power communication system with standard dipole antennas for GMSK modulation in the 400MHz
amateur satellite band. If BLUESat were to persist with a design for launch, its 2U form factor would lend it to

larger payloads that require a relatively low (10kbps) data-rates.

1.2.3 MIT CubeSats

MIT’s publication Inflatable Antenna for CubeSat: Fabrication, Deployment and Results of Experimental Tests [17]
demonstrates a university with the common pursuit of increasing LEO data-rates and pushing small satellites into
higher orbits by developing a novel inflatable antenna. MIT’s engineers demonstrate inflatable antenna gains of as
high as 15dBi using a frontal feeder geometry for 2U and 3U CubeSats. As mentioned in the paper, this facilitates
data-rates in the Mbps range, as opposed to the more standard kbps range. MIT have measured these antenna gains
at as low as 2.4GHz. These results give ample motivation for MSP’s mission of developing a Cassegrain topology

inflatable antenna at 5.6GHz.

1.2.4 NASA Nodes

As a part of NASA’s ongoing initiative to give small satellites access to space through facilities on the ISS, they have
launched two satellites as a proof-of-concept for future small satellite mesh networking [18]. NASA communicates
with one of two independent orbiting satellites J and K, who autonomously decide which is more optimal to relay

telecommands and data with the ground station.

1.2.5 Commercial solutions to CubeSat telecommunication

There are many retailers that sell CubeSat specific telecommunication systems for off-the-shelf purchase. These
systems often boast low-power requirements, but make trade-offs in achievable data-rates. GOMSpace’s AX100
NanoCom [19] communications module offers data-rates from 0.1kbps to 112kbps depending on the SNR offered
in the link budget. This module supports FSK/GMSK modulation, Reed-Solomon FEC and a very typical AX.25
(amateur radio standard) data-link layer. MSP’s CubeSat is investigating the same data-link protocol, but this has

not been the work of this capstone.

1.3 OFDM Overview

Orthogonal Frequency Division Muliplexing (OFDM) as a modulation scheme has experienced a rapid growth in
popularity since being used in applications as varied as 4G mobile phones, WiFi and terrestrial digital television

(DVB-T).

OFDM is a technique to transmit bits simultaneously over a large number of closely spaced frequencies, known as
subcarriers. With OFDM, symbols can be transmitted at a low symbol rate while the total data rate is similar
to a single-carrier transmission with the same sub-carrier modulation scheme and bandwidth, since each symbol
consists of multiple data bits. Due to the low symbol rate, the interval gain (cyclic prefix) can be used to offer
robustuness against Inter-Symbol Interference (ISI). Data may be modulated onto each subcarrier using any standard
modulation scheme: while Quadrature Amplitude Modulation (QAM) is popular, Phase-Shift Keying (PSK) will

be implemented here.

Even though the sidebands from each subcarrier are overlapping, they can still be received without interference and
demodulated independently. In order to achieve this, a high degree of orthogonality is required to ensure that, as
shown in Figure 2, at the sprectral peak of one subcarrier, all others have zero amplitude. As such, the subcarriers

can be closely spaced to provide OFDM'’s very high spectral efficiency.

However, OFDM systems are very sensitive and vulnerable to carrier offset and drift caused by Doppler shift and

frequency offsets. These problems lead to the inter-carrier interference (ICI). Another deficiency of the OFDM

Nsc+Ncp
B

system is that it constrains the choice of SNR to a discrete set. The symbol period T' = , where Ng¢ is

i Af

Figure 2: OFDM subcarriers [2]

the FFT size, Nop is the length of cyclic prefix, and B is the bandwidth. Because the FFT size has to be a power
of two for efficiencies in the BBP, the symbol period too is discrete. Thus, the range of SNR = % choices are
discrete, ensuring that the choice of SNR is a step. In this project, the entire transmission window is conducted at

a fixed bandwidth.

This OFDM system will address all of the above concerns, as well as provide a basis for a variable rate system for
future teams. One possibility, as shown in Figure 3, demonstrates how the received power varies with the satellite’s
orbiting. The system could promote a variable-bandwidth protocol to achieve constant SNR over the satellite’s

orbit.

A
Received power —
Bandwidth --

—y

Figure 3: The stepped bandwidths for various received power

A key advantage of OFDM is that it can be efficiently implemented with the FFT algorithm, as shown in Figure 15°.

1See Section 5.4.3

Term Value

Bandwidth 5 MHz
Data rate 1.5 Mb/s
Symbol period (with CP) 16 ps
Symbol period (without CP) 12.8 ps
Guard interval period 3.2 us
Subcarrier spacings 78.125 kHz
Coding rate %

Number of pilot subcarriers 4

Number of data subcarrier 48
Number of subcarriers 52
Number of pad bits 12

FFT size 64
Interleaving depth 67 symbols
Cyclic prefix length 16
Modulation scheme BPSK
Number of bits per subcarrier 64

Number of complex numbers in one sample | 80

Length of a short preamble 10 short symbols
Short preamble period 8 us

Length of a long preamble 2 long symbols
Long preamble period 8 us

Table 1: OFDM specification

A OFDM symbol holds 48 information bits: 24 data bits are encoded and interleaved to generate this block size.
After that, 4 subcarrier pilots and 12 padding bits are inserted to fill a 64-bit symbol. The 64 bit symbol is mapped
to a set of 64-bit complex numbers using BPSK modulation. The main parameters of a OFDM symbol are provided

in Table 1.

1.4 Physical Constraints

The telecommunications system has to perform more computations per seconds than most comparable systems,
but only has access to a standard wattage. This is limited by the physical size of the cube: five of the six 100mm
square sides are covered with PV cells. At the time of writing, these cells can generate 8W when in full sun, some
of which goes into recharging the battery to be used while in the shadow of the earth. The specifics of this power

system falls within the scope of another Capstone project. The relevant information is the allowable power draw of

the telecommunications system: during transmission it is allowed to draw enough power to enable 1W of RF output
power 2. In order to avoid overshadowing the solar panels, the parabolic reflector design had to be complicated to

place a secondary reflector on the Earth side of the satellite.

In order to fully utilise the increased power density afforded by the parabolic reflector, the satellite must be oriented
toward Melbourne. This actuation is performed by magnetorquers: loops of current-carrying wire that interact with
the magnetic field of the Earth to exert a torque on the satellite. The pointing accuracy of this is dependent on
many factors, including the maximum allowable current draw and the sensor’s sampling rates. Furthermore, sensors
must pass data into algorithms to calculate an estimate of where the satellite thinks it and Melbourne are, and
based off these determine the correct amount to rotate the satellite. Since there will be inaccuracies in both of
these processes, the telecommunications team applied a constraint that the angular offset between the desired and
actual orientation of the satellite must be less than 5°, which is the parabolic reflector’s half power beamwidth.
This places an upper limit on the directivity of our antennas: if the designed antenna beamwidth was significantly
less than 10°, it is likely that the receiver would pick up only negligible amounts of power since the transmitter
was oriented elsewhere: to ensure reliable transmission the directivity is upper-bounded. As such, the maximum

pointing loss term for the parabolic reflector in the link budget is -3dB.

2See Section 2.1

2 Feasibility Study

2.1 Power Budget

The Capstone group has worked closely with the Power team to ensure that sufficient power will be made available
to the telecommunications system during transmission, which is the most power intensive period within the orbit.
Power is harvested via PV cells, and onboard batteries and supercapacitors can be discharged at times of large
power draw. The power draw from the communications board is described in Table 2. Each row refers to a
particular voltage rail required by the telecommunications hardware: the AFE, DSP and the power amplifier, and
the typical loads are derived from the datasheets for each of these [5, 20]. The Power team has selected buck and

boost converters with minimum and maximum load currents, and efficiencies at the given loads.

No specific power amplifier has been selected yet, so the given parameters are an aggregate of possible choices
[21, 22]. Each of the power amplifier choices output over 30dBm, satisfying the 1W output power requirement from
the link budget?®. The quoted P,,; = 8W is the power output from the voltage regulator at the input to the power
amplifier. Such amplifiers exhibit poor power efficiency in order to provide the high linearity that OFDM requires
[23].

3See Section 2.2.2

Power System Output | Vout [V] | Min Max Typical Typical Typical Typical Typical Pout min Pout maz
load [A] | load [A] | load [?] | efficiency | Pou: P; Pioss

AFE 3V3 3.3 0.01 3 0.3 85 0.99 1.165 0.175 0.033 9.9
AFE 1V8 1.8 0.02 3 0.0045 85 0.0081 0.010 0.001 0.036 5.4
AFE 1V3 1.3 0.001 1 0.6 61 0.78 1.279 0.499 0.0013 1.3
DSP_Core 1.05 0.1 6 2.06 85 2.163 2.545 0.382 0.105 6.3
DSP_DRAM 1.5 0.02 3 0.28 85 0.42 0.494 0.074 0.03 4.5
DSP 10O 2.5 0.02 3 0.15 87 0.375 0.431 0.056 0.05 7.5
DSP _ANALOG 1.05 0.001 1 0.02 50 0.021 0.042 0.021 0.00105 1.05
V_AMP 5 0.1 1.5 1.2 75 8 10.667 2.667 0.5 7.5
Communications TOTAL | - - - - - 12,7571 16.631 3.874 - -

Table 2: Telecommunications board power budget during RF transmission

2.2 Link Budget

2.2.1 Overview

The link budget is a way of quantifying the power losses during transmission of an RF signal over the channel. In
essence, it is a list of different sources of known signal power gain and attenuation, and the margins introduced
to account for highly variable or difficult-to-model phenomena. This can be used to determine the expected signal
power at the receiver. Work performed in channel characterisation can provide rough bounds for the thermal noise
power and varying attenuations that can be expected during transmission. Using this information, a signal to
noise ratio (SNR) value can be determined using the discrete OFDM bit period choices to estimate the data rate.
Furthermore, a link budget is required for submission of an application to the ITU and ACMA for bandwidth
allocation, according to ACMA Regulations [24].

2.2.2 Details

A centre frequency of feentre = 5.60GHz and a conservative orbital radius of Ryrpitq; = 600km are used for the

following analysis. The considered sources of gain and loss are described below, and tabulated in Table 3.

Term Value for whip | Value for parabolic reflective
antenna (dB) antenna (dB)
Path Loss -163.05 -163.05
Ground station antenna gain (dBi) 43 43
Satellite antenna gain (dBi) 1.5 13
Ground station and satellite pointing loss -0.5 -3
PAPR reduction -10 -10
Ground station feeder loss -1 -1
Satellite feeder loss 0 0
Tonospheric and tropospheric polarization loss | -3 -3
margin
Additional ionospheric loss -1 -1
Tropospheric losses -0.2 -0.2
Rain losses -1.2 -1.2
-135.44dB -126.44dB

Table 3: Link budget gains and attenuation terms

The largest constituent term to this power difference is the free space loss (FSL). This reflects the fact that areal

power density must decrease as the wave propagates outward [25]. The free-space loss is given by Equation 1:

10

47\ 2

This is dependent upon the signal frequency since the amount of RF power captured is dependent on the effective
aperture of the antenna, which is always less that the perpendicular area swept by the receiving antenna. As the
wave frequency increases, diffraction becomes less pronounced, so the antenna will exhibit a decreased sensitivity

to waves approaching the receiver circuit at angles further out from the main lobe [25].

It is well understood that the peak to average power ratio (PAPR) is one of the main deficiencies of OFDM. This
is a manifestation of the beating phenomena: when multiple sinusoids of similar frequencies add up a time-varying
envelope is observed. In order to prevent clipping, the average output power must lie below the maximum output
power. There is a probabilistic relationship at play as demonstrated in Figure 4, as the considered PARP increases
the likelihood of observing a sample with this power ratio decreases. For the purposes of this report, a 10dB margin

can be introduced, which brings the clipping rate below an error rate that the encoding scheme can correct for.

10
10"
8
A
=
=
b : :
("I
Wil —— v =64
H —o— v =122
—+— N =256
| ——n =512
—5— ¥ =1024
10'3 I T
3 4 A

Figure 4: PARP likelihood curves [3]

However, this issue forms a key area of future work for a subsequent Capstone or MSP team. Multiple PARP
reduction techniques exist [3], and will be further investigated to reduce the -10dB loss margin introduced in the

link budget.

11

2.2.2.1 Antennas

RF simulation? has determined an inflatable antenna and feedhorn pairing at 5.65GHz has a gain of 13dBi with
a beamwidth of 10°. If the attitude control system exhibits inaccuracies, or the models to determine where the
satellite is located have deficiencies, the satellite will not be pointing directly at the ground station®. A maximum
pointing loss of -3dB exists for the parabolic reflector and -0.5 for the half-wave dipole, since it has a far broader

beamwidth.

Feeder losses are attenuations to power due to resistive and other losses in the wires and conduits connecting the
antenna and the analog front end (AFE) chip. On the satellite, these are physically close together, so we can neglect
the feeder losses. At the ground station on top of Redmond Barry, these are physically separated by roughly 5m.

Since this conduit has not yet been designed, the loss was estimated from a literature review [26] at -1dB.

2.2.2.2 Atmospheric Effects

The selected AFE is capable of transmitting up to 6GHz, but if it proves impossible to access any frequencies below
this due to cost constraints or legal difficulties, a secondary mixer can be implemented to bring the final transmission
frequency up to microwave range: 24GHz. This brings advantages in directivity, but also significantly increases
power losses due to absorption by HoO and O molecules in the troposphere. At 5.65GHz, these losses were very
small, contributing only -0.2dB. However, water molecules exhibit resonance near the microwave range at 22.23GHz
[27] as seen in Figure 5: this is why household microwaves output RF energy at this frequency. If transmission
occurs at 24GHz, the total tropospheric loss rises to -6.2dB, assuming that the troposphere depth is 20km and the
maximum zenith angle is 70°. These are conservative assumptions, since the troposphere generally has a depth of
between Tkm and 20km. Losses due to absorption by rain were also taken into account via the literature review
[26], however this source of attenuation is time-varying. If a particularly dense rainstorm occurs, the transmission
window can be skipped since the data at this stage isn’t time-critical. Moreover, getting accurate data for the type
of rain and clouds commonly observed above Melbourne is difficult, so conservative margins of -1dB at 5.65GHz
and -3dB at 24GHz were introduced [26]. Power losses will also occur due to mismatches in circular polarization
phase®. The worst case is when the received wave and the receiving antennas are offset by 45°, resulting in a power

loss of -3dB.

2.2.2.3 Results

Adding all of these together gives the total theoretical difference between transmitted and received signal power,

as described in Table 3. Following discussion with other teams in the program, the telecommunications team was

4See Section 7.5
5See Section 1.4
6See Section 7.2

12

WAVELENGTH [mm)
20 15 100 B0 &050 4.0 30 20 15 10 0.8
— r | :

T
=

58
|

|

B2
= 0 b OO
1

MY
f
/
b

§

L 2-N-)

ST

i 1
)

ATTENUATION [dB/km)

T ! !

004}~ A/ 1A | I[
002 P o | o
0.0t —— 1T 1 . |
0004 8 HO [‘ '
0.002— |] ; |
n_m | | |

10 15 20 25 30 40 S0 &0 8D 100 150 200 250300 400
FREQUENCY (GHz)

Figure 5: Tropospheric losses due to HyO and Oz absorption [4]

granted 1W of RF output power during the period of transmission. This does not include the power taken to run
the hardware, or the efficiencies of the power amplifier. By substituting in the expected downlink transmission
power of 1W, the following received signal powers are determined, as shown in Table 4. The downlink is chosen for

analysis since it is the most power limited, and carries the bulk of the data.

Antenna Type | Signal Power [W]
Parabolic reflector | 2.266 x 10713 [W]
Whip 2.853 x 10~14 [W]

Table 4: Downlink received signal powers calculated by the link budget

Since BPSK is implemented on each individual non-null subcarrier, the power requirement of each tone is always
constant. If QAM were employed, then some tones would demand a greater proportion of the available output
power. However, in this case the transmit power for each tone is simply 5% [W] since 11 bits carry no power to
serve as guard-bands and an additional tone is nulled to ensure no DC offset in baseband. This bit power is the
quantity of interest for deriving the SNR per bit. This can be converted to a bit energy by multiplying by the
symbol period minus the cyclic prefix. In order to do this, the magnitude of noise power must be known and was
conservatively chosen to be 150°K via a literature review of similar systems [26, 28]. This assumption will be

formalised by a non-Capstone member for the MSP team.

13

2.2.3 Achievable Bit Rates

Using this system noise temperature, the noise power spectral density can be defined. Dividing the energy per tone
by this quantity yields the SNR per bit, then a logarithm is taken of this value. A benchmark was set to achieve
a BER of ~ 1075, which requires an SNR of between 9 and 10dB. Figure 6 was derived from MATLAB example

code:

theoretic Bit error probability for BPSK

Bit Error Rate

X9 i
Y: 3.363e-05
|

Eb/No, dB

Figure 6: BER vs. SNR curve for BPSK-modulated OFDM, assuming no ICI.

Additionally, to account for any sources of power loss not accounted for in Table 3, an extra margin is required.
Numerous literature review placed this additional margin at 20dB, however the attenuations have been well modelled
in this case, so this margin has been reduced to around 6.8dB. The parabolic reflector meets these margins while
utilising all subcarriers, and so maintains the 5MHz bandwidth. Due to its lower antenna gain, the whip antenna
must decrease its bandwidth by a factor of eight to achieve a 9dB increase in signal power. This discrete division

is mandated by the FFT algorithm.

Table 5 also includes a coding gain term. This was derived from a literature review of a similar system to be
1.5dB, but analysis on the scheme implemented in this project will be presented in Section 5.2.4, along with further

analysis on the relationship between coding gain and BER.

14

Term Value for parabolic reflective | Value for whip
antenna (dB) antenna (dB)
Number of active tones per symbol 52 52
Number of data tones per symbol 48 48
Boltzmann’s Constant [m?kgs 2K ~}| 1.38E-23 1.38E-23
Bandwidth [Hz| 5.00E-+06 6.25E-+05
Downlink received signal power [W] 2.27E-13 2.85E-14
GS antenna noise temp [° K] 150.0 150.0
Downlink noise PSD [W/Hz] 2.07E-21 2.07E-21
Symbol period [secs] 1.60E-05 1.28E-04
Non-CP symbol period [secs] 1.28E-05 1.02E-04
Symbol frequency [Hz| 62500.00 7812.50
Energy per tone [J] 5.58E-20 5.62E-20
Eb/NO 27.0 27.1
Eb/No [dB] 14.31 14.34
Coding gain [dB]| 1.5 1.5
Required Eb/NO for BER = 107° [dB| | 9.0 9.0
Downlink margin [dB] 6.8 6.8
Convolutional rate 0.5 0.5
Data rate [kbit/sec] 1459.1 182.4
Average transmission window [secs/day] | 1329.0 1329.0
Decoded data amount [bits] 1.99E+09 2.49E+08
Decoded data amount [Mbytes| 237.6 29.7

Table 5: Data rates from link budget

2.2.4 Future Work

A known disadvantage of OFDM is its high peak-to-average power ratio. The given transmission power of 1W
is the maximum that the power team can provide to the telecommunications team when the OFDM subcarriers
superimpose. An amplifier with high linearity is desired to output a signal within the dynamic range [23], however
on average when the subcarriers aren’t superimposing the output power is in an ideal case 17dB less than the
worst-case peak power. In order to meet the required SNR margin, further work will be conducted to weigh up
reductions in the SNR margin, occupied bandwidth and the amount of allowable clipping. There exist numerous

methods to remedy this issue [3, 29].

15

3 Specifications

3.1 OFDM Simulation

3.1.1 Bit Error Rate in BPSK OFDM

Since the Cyclic Prefix is appended to eliminate the the Inter-Symbol-Interference (ISI) by extended guard intervals,
the bit energy spanning over the symbol period is extended to the cyclic prefix as well [30]. Assuming that the
symbol period is T and the cyclic prefix period is T;,, the symbol energy is given by Equation 2:

Ty

E,-——9_F 2
Ty+Top (2)

In addition, a number of tones at the edge of the are not used to transmit valid data due to the roll off the passband
spectrum. This means all bit energy is concentrated in the valid tones and the noise are spread out in entire
passband. Assume the number of data subcarriers is equal to nDSC, and the number of OFDM tones is equal to

nFFT (FFT size). The symbol energy is given by Equation 3:

nDSC

Es = L Frrl (3)

Combining Equation 2 and Equation 3, the symbol SNR is given by Equation 5:

E, EynDSC Ty

NO - NO TLFFTTd+TCp

Expressed in dB, this becomes:

E, E D T
L= B ap 4 1010g "22C 4 1010g — 14

No No nFFT Ty + Ty (5)

The MATLAB simulation shows that the performance of BPSK in OFDM is nearly the same as the performance

for theoretical BPSK, as seen in Figure 7.

3.1.2 Simulink OFDM Model

There are two purpose of the simulation model in which the MATLAB Simulink is used.

16

Bit error probability curve for BPSK using OFDM

o
N

Bit Error Rate

o

>
&

0 2 4 6 8 10
Eb/No, dB

Figure 7: Simulation OFDM BER vs theoretical OFDM BER

e Verify the calculation in the Link Budget
e Provide the prototype for hardware design

The model of the digital part of the OFDM system in Simulink is shown in Figure 8. A random bit sequence
is generated as a random integer, and sent through the interleaver, BPSK mapper, OFDM modulator and gain
normalization blocks. Bounds for the sampling rate are derived within the link budget, and the channel is classified
as AWGN without Rayleigh fading. A 6dB SNR margin is reserved for non-ideal synchronization, quantization, RF
model and etc. The signal travels back to the receiver through OFDM demodulator, FEQ, BPSK demodulator and

deinterleaver. The bit error rate is counted at the end of the receiver to validate the link budget.

A~ o0 %50 v o060 [a820] norm Gain tx Gain1
Random input_iafipu | Rectangular data_in
Integer [960x1] 960 2-QAM 960 [48x20]
Libe interleavg Serial to Parellel ‘ T

Channel Loss

MATLAB Function
ST o PRl oot o0
[4x20]"

Baseband

OFDM_modulator

Spectrum - AWGN
Transmitter ! Channel ENTEL.

313405 1960

Tx
3 Error Rate 1920
[i6ewg [a| Celcuiaton |3¥ - Spectrum
’ i Reshape? receiver
Error Rate - [52x24] —
Calculation 1248
Display
Pre-FEQ
Post-FEQ
[52x24] 1920 1920 19:
AL Frequency | [s224) caaon o caa 1 m@‘mm <
[48%2 " [52x21
%60 Rezdar&gﬁia N ng Dgci;m {‘52;(22 E?,mm [52x4) OFDM_DEM Receiver GainReceiver Gain
cube deintlv "
MATLAB Functioni Rectangular QAM OFDM _Demodulator

Demodulator
Baseband

Figure 8: The top layer of MATLAB Simulink model

17

For the 5MHz profile, the transmit and receive spectra are shown in Figure 9. These spectra can be compared

against those presented in Section 10.2 to show that the hardware implementation behaves as expected.

\F

0
Frequency (MHz)
Running RBW=5.86 kHz |Sample Rate=6 MHz T=2.321 Running RBW=586 kHz Sample Rate=6 MHz T=3.307

Frequency (MHz)

(a) Transmitter (b) Receiver

Figure 9: Spectrum of 5MHz OFDM profile

The bit error rate for 9dB bit SNR is approximately 3.1 x 1075 which agrees with the theoretical result. For the

625kHz profile, the transmit and receive spectra are shown in Figure 10.

I

-200 -100 0 100 200 300 -200 -100 0] 100 200 300
Frequency (kHz) Frequency (kHz)

(a) Transmitter (b) Receiver

Figure 10: Spectrum of 625kHz OFDM profile
The bit error rate for 9dB bit SNR is approximately 3.03 x 10~° which agrees with the theoretical result. To
conclude, subtracting a 6.8dB SNR margin for 5SMHz profile using parabolic antenna and 625KHz profile using

whip antenna, the 3 x 107° bit error rate is achievable using the extremely conservative 1.5dB estimate for coding

gain under AWGN channel, verifying the results from the link budget.

18

3.2 System Modes

The system has to be able to operate in three different modes: which necessitates the design of such a flexible
system. There is a high data rate system employing 5MHz OFDM via the parabolic reflector, a moderate rate but
high reliability system using 625kHz OFDM via the crossed half-wave dipoles, and finally a low rate, very high
reliability BPSK system for TT&C transmitting via the dipole antennas. This will be used for beaconing during
the detumbling phase as the satellite and ground station attempt to lock on to one another. It will also be used to

turn off the satellite in the event of harmful interference being caused to surrounding satellites.

3.3 Offline system demonstration

The deliverable outcome for this project will be an offline evaluation board representation of the final flight-ready
system. Once this has proven the concept to be valid, work can progress on designing the final PCB. The data path

is shown in Figure 11.

Transmitter _\7
) F 9
BEBP File PC Etherne! Zedboard FMG AFE Eval Board
fransfer
BEP File PC Etherne Zedboard FMC AFE Eval Board
fransfer

Receiver

Figure 11: Offline data path

A test file is generated on a laptop, and all baseband operations are conducted on the BBP. This step outputs
OFDM data frames into complex time domain samples, which are passed into a MATLAB OFDM transmission
model, which drives the AFE to modulate these samples to the carrier frequency. In this demonstration, file transfers

will take the place of data transmission over an LVDS interface.

Another PC runs a reception Simulink model which captures data when the model starts, an executes augmented
MATLAB code to perform synchronisation and output FEQ gains to be applied on the DSP. It is neccessary to
perform this on MATLAB due to the offline nature of the system. The synchronized complex time domain OFDM
frame are written to a file for transfer to the BBP, where the baseband reception algorithms are implemented. Here,

the received and original messages are compared to determine a BER for validation.

19

This data chain, while convoluted, is necessary to test the system. On the final board, the two chips will commu-
nication over an LVDS interface, however this standard is only designed for short transmission distances, and is
hence not broken out on either evaluation board. This is because LVDS was originally desired as a communication
standard between chips of the same computer monitor. In a future Capstone project, a system can be implemented
where the DSP communicates in real-time with the AFE. Optimising the baseband code is important to this end,

since all operations will need to have taken place within the cycle window.

20

4 Hardware Proposal

4.1 Original Requirements for Hardware

MSP’s CubeSat mission goals include building a system that is high-speed, reliable and flexible to ensure the
success of future satellite missions. Hardware must thus be chosen to reflect these requirements. Since there are
very few commerical, off-the-shelf (COTS) high data-rate CubeSat systems that provide the necessary development
flexibility, appropriate hardware was selected for our system. Similar CubeSat designs are only made possible by
the additional gains provided by the antenna systems [31]. To meet requirements of system flexibility, The following

factors should be considered in hardware evaluation.

1. Very low risk hardware system solutions.
Since there is a lot of high speed hardware design involved in this project, designing with high frequency analog
and digital components would be a major risk in the first design stage. Evaluation boards are preferable to
simulate and verify the whole system in the first development stage, and they should be transferable to the

customer board design.

2. Very high flexibility for AFE implementation.
Since the legal issue is a major constraint for the RF carrier frequency and bandwidth selection, the centre
frequency and bandwidth of AFE should be adjustable and the range should be as large as possible. The

performance for the gain control and and data interface should also be particularly considered.

3. Very high capability for baseband processor (BBP) design.
In order to implement an OFDM system with the data-rate adaptable in different link modes, the BBP should
be capable to process all OFDM algorithms in the defined symbol time period. The efficiency of computation

blocks, size of memories and bandwidth of data interface are the essential factors for evaluation.

4. Quick to implement for an engineering student.
As a Master students program and one year capstone project, the design methodology should be accessible

and understandable for the engineering students in a reasonable time frame.

5. Proven performance in communication systems.
The hardware should have good records of communication system implementations with verified functionality

in industry or research programs.

6. Space qualified.
Since the final product will be launched into space, the components should be processed and manufactured

to meet the space environment requirements.

21

The system could be generally divided into AFE, BBP and Antenna subsystems as shown in the Figure 12, each of

which are discussed in subsequent sections.

Coder Modulator DA IQ MIXER HPA Inflatable
Antenna/

Dipole

Demodulat < Antenna
Decoder o AD 10 MIXER LNA

BBP (Base—band Processor) AFE (Analog Front End)
A

A
FPGA/DSP Integrat?d RF
Transceiver

Figure 12: General hardware proposal, indicating the logical separation of BBP and AFE chips.

4.2 Analog Front End proposal

Because the team’s negotiations with ACMA had only initiated, it was imperative to select an analog front end
(AFE) that traversed as many legal bands as possible. This would ensure flexibility in design when it came
to settling on bandwidth. This decision was propounded by the requirements of the novel antenna, which is of
relatively small geometry”. Since it does not employ a dipole as its primary antenna, it was also important that this
AFE offered lower-wavelength communications that the typical UHF/VHF bands where typical CubeSat systems
reside [15, 16, 32]. The Analog Devices AD9364 AFE was selected since it meets these requirements.

The outstanding features of the AD9364 are shown below [5]:
e RF transceiver with integrated 12-bit DACs and ADCs
e 70 MHz to 6.0 GHz range for centre frequency
e 200 kHz to 56 MHz tunable channel bandwidth
e LVDS high speed data interface
o In-built AGC with alternative MGC modes
e SPI for control interface
e Mainly used for WIFI/LTE communications

e Evaluation board is available

7See Section 7

22

e Supported by MATLAB SDR

The AD9364 has integrated AD/DA, IQ modulation, flexible gain control and an RF mixer. The brief internal
block diagram of AD9364 is shown in Figure 13.

PO_[D11:00)/
0 1" [Ds:00]

P1_[D11:00)
=0 ax [Ds:00)

DATA INTERFACE

RADIO
SWITCHING

J

CLK_OUT

—
AUXADC AUXDACK: XTALM

NOTES
1. §PI, CTRL, PO_[D11:D0JTX_[D5:D0], P1_[D11:D0)RX_[D5:00],
AND RADIO SWITCHING CONTAIN MULTIPLE PINS.

118001

Figure 13: The block diagram of AD9364 [5]

4.3 Base-band Processor proposal

4.3.1 DSP and FPGA comparison

The DSP and FPGA are the two most popular processors for communication signal processing on the market. A
DSP is a specialised micro-processor, and it is well suited for algorithm-intensive tasks. Normally the DSP could
be programmed in C code or assembly code. Assembly code builds are more efficient than those with C code if
the optimization is conducted properly, but can be time-consuming for an inexperienced programmer. For a DSP,
the clock cycle consumption is the key criterion for the algorithm evaluation. An FPGA is a combination of large
resources of logic gates and memory blocks for the user to design their digital circuits. A hardware description
language (HDL) is generally used for FPGA programming, with Verilog and VHDL being the two most common
HDL languages in the industry. The performance of FGPAs are usually limited by their logic resources and clock
speed. The comparison of DSPs and FGPAs for this project are shown in Table 6.

FPGAs are more flexible than DSPs in terms of hardware adaptability and extensibility, but the time frame for
development for FPGA cannot meet our requirement. Although a DSP has lower scalability than an FPGA, a

23

DSP FPGA
Power Medium Medium
Cost Medium Medium
Performance Limited by MIPS | Limited by logic resource and clock speed
Scalability Medium High
Development Language C or Assembly HDL(Verilog or VHDL)
Estimated Schedule for development | 6 Month 12 Month

Table 6: DSP and FPGA comparison

specialised DSP which includes an enhanced communication instruction set is capable enough to implement all
of the algorithms in an OFDM system. Therefore, the Analog Devices TS201-S DSP was selected as the BBP,
since published technical reports [9, 33] indicated that (with extrapolation) the most complex algorithms could be

performed in sufficient clock-cycles to meet the OFDM topology proposed in Section 3.

4.3.2 DSP ADSP-TS201S

The ADSP-TS201S is one of the members of the Analog Devices TigerSHARC processor family. It is particularly
optimized for telecommunication infrastructure and other large, demanding multiprocessor DSP applications. There
exist accelerated hard-wired logic for complex multiplications, Viterbi decoding and interleaving which are essential
for OFDM computation. It is also notable that this processor contains the LVDS interface which enables the direct
connection between AFE and BBP. The hardware architecture of ADSP-TS201S is shown in the Figure 14.

To achieve the required cycle budget for OFDM processing, the DSP’s processor contains numerous qualities that

will benefit the system [34]:
e Wireless telecomm applications
e Up to 600MHz clock rate
e 16.8 microseconds for 1024-point complex FFT
e 200 kHz to 56 MHz tunable channel bandwidth
e 24 Mbit on-chip DRAM
e Enhanced instruction set for communication algorithm
e LVDS interface
e Evaluation board is available

24

PROGRAM DATA ADDRESS GENERATION

SEQUENCER 2 a
INTEGER INTEGER
:I:_Jr%F:l_ JHALU "‘"‘J.# | KJALU
3 T
¢ 'Y Y}
J-BUS ADDR 32
¢ 72 >
- J-BUS DATA 128 ¥
8 / >
K-BUS ADDR 32 A i i
L]k 7 >
K-BUS DATA 128 ¥
¢ Z >
I-BUS ADDR 32 1 t
-~ 7 :>
1-BUS DATA 128 L
IAB |+ e i]
Al
2 » :
l | A
B[« |
> 3 | | recisteR| 125 Y
G E FLE &> DAB
= 32x32
=
Yy
COMPUTATIONAL BLOCKS
L

%
|

*]
I HT Sl m“
Y -
REGISTER | 128
FILE |e>— DAB
32x32
L I

Figure 14: The hardware architecture of the AD TS201-S as illustrated in the programming reference manual [6].

CLu

l+— SHIFTER

e A dedicated CLU, that can perform trellis and interleave operations very efficiently.

Pipe-lined architecture, so memory reads, communications arithmetic, arithmetic logic, integer logic and

shifter logic can all operate in a paralleled fashion.

An easily compilable and referable instruction set, including C-integrable-assembly code instructions.

Extensive hardware, programming and assembler reference manuals.

Of particular importance is the presence of dual compute blocks (X, Y) and their associated paralleled CLU,
SHIFTER, ALU and MULTIPLIER. These are harnessed by the compiler to produce fairly efficient algorithms,

operating within the available cycle budgets®. As an example, if the team wishes to pursue a constraint length k = 5

8See Section 4.3.3

25

convolutional coder in the future, as opposed to the current & = 4 code, these compute blocks can be addressed
independently from assembly to perform very efficient decoding, with almost no additional cycle costs compared to

the current implementation.

4.3.3 Cycle budget

Since the clock rate for ADSP-TS201S is standardised at 500MHz, with the option to be clocked at 600MHz, an
estimation for the BBP cycle budget is instantiated in Table 7-9. This cycle budget needs to be met to ensure

real-time operability of the telecommunications architecture proposed in this project.

BBP | AD TS201-S
Clock speed 500 | MHz
Data period + CP 16 s
Total clock cycles 8000 | cycles
Clock cycle margin 4000 | cycles
Total available clock cycles 4000 | cycles

Table 7: Overall clock budget analysis

Major transmitter algorithm | Clock cycle estimations | Clock (%) estimations
Encoder 500 26.3

Interleaver 500 26.3

Mapper 300 15.8

IFFT 500 26.3

Add CP 100 5.3

Total 1900 100

Table 8: Clock budget estimations for major transmitter functions.

Major receiver algorithms | Clock cycle estimations | Clock (%) estimations
Viterbi decoder 1500 39.5

Deinterleaver 500 13.2

Demapper 400 10.5

FEQ 800 21.1

FFT 500 13.2

Total 3700 100

Table 9: Clock budget estimations for major receiver functions.

FFT and Viterbi estimates were obtained by extrapolating the cycle counts presented in technical reports [9] and

26

[33] respectively. Since performances of other modules could not be sourced, they were given estimates based on
their comparative complexity to the Viterbi and FFT algorithms. In order to account for processor interruptions,
stalls and data-link layer interactivity, the team asserted a 50% margin on the total clock cycles to achieve adequate
system reliability. Clearly, the results of the estimates suggest that pursuing development on the TigerSHARC
processor is feasible for the proposed high data-rate OFDM system.

4.4 Hardware sponsorship

At full commercial retail price, each TigerSHARC TS-201S DSP and AD9364 evaluation board set from Analog
Devices cost roughly $5000AUD, and the ZedBoards from Xilinx cost $495USD. As these prices were clearly out
of the budget of the group’s FYP allowance and the MSP funding, sponsorship was sought from Analog Devices
and Xilinx and these companies were kind enough to donate four TigerSHARC TS-201S evaluation boards, four
AD9364 evaluation boards, four seats of VisualDSP++, two ZedBoards and two copies of the Zynq programming

environment for a combined value in excess of $21,000 AUD.

27

5 Baseband Digital System Design

5.1 Physical Layer Base-band Architecture

The digital base-band design of the CubeSat system has been based on physical layer specifications of the WiFi
standards. Primarily, this is because WiFi supports an adaptive rate protocol using OFDM modulation. Secondarily,

WiFi is a highly documented standard and there are widespread third-party resources available for design purposes.

Data-link layer protocols® are also being developed by the telecommunications team, but have not been the focus
of the Capstone team. Since the WiFi data-link and MAC layer is concerned with the networking of satellites, the
data-link will be instead based on the point-to-point amateur-radio standards, AX.25, due to its reduced scope. The

data-link protocols will be principally developed on the operating system’s chip - the Texas Instruments MSP432.

5.1.1 Data Flow

Convolutional
Encoder

— Interleaver

>

Mapper
(BPSK)

OFDM Modulator
(84-TFFT)

Cyclic
Prefix

Viterbi

«—1 Deinterleaver
Decoder

Demapper
(BPSK)

Figure 15: Interconnections of the high level base-band system architecture.

As illustrated in Figure 15, the base-band digital system is significantly complex and requires the interconnection
of many functions to achieve OFDM modulation and provide robustness to channel effects. The WiFi standards

outline an appropriate frame format for the data pass, which contains both synchronisation (preamble) symbols

Pilot
Interpolation +

Preamble
Generator

I
I

OFDM

Remove Cyclic

Apply Coarse
Frequency
Offset
Correction

Equalization
(FEQ)

(64-FFT)

Offset
Detection

%

! Frequency («—| Demodulator [— Prefix
Equalization (B4-FFT)
(FEQ)
Prf aFni"be1 eue(;acixfls OFDM Frceoixresnecv Timin
a ° [—— Demodulator [¢— a i e

Recovery

and data (payload) symbols.

A high-level system overview will be provided here, with further description (at the exception of the OS) provided

in each module’s relevant sections.

9See Figure 66 for details of telecommunication system abstraction in the OSI model.

28

reanble

RF
Transceiver

Channel

RF
Transceiver +
AGC

Short Preamble Training Long Preamble Training
16+16 = 32us 16+16 = 32us 16us 16us 16us

El ty |tz te tSEG ty |tz | to |tio] Gl Tli T, Eﬁl PAYLOAD IG PAYLOIJ\D} LI @ PAYLOAD
>\ /

< -
-t - -t
Guard Interval Data

A
Y
A
A
Y
A
Y

AGC, Signal Detection, CFOE, Channel and fine frequency
Diversity Selection Timing Sync. offset estimation

Figure 16: Frame format of the data passed through the link

In the transmitter, we have:

Operating System provides the transmission data to the communications system. The operating system is the

first point in the system at which the amalgamated PHY data can be interpreted.

Convolutional Encoder performs forward error correction encoding for the system, reducing the overall system’s

BER.

Interleaver interlaces binary data over fixed intervals. Consequently, if channel bursts occur only part of a

deinterleaved packet will have been destroyed.
Mapper maps the binary domain elements to a complex domain floating point number.
OFDM Modulator converts the complex frequency domain inputs to a complex time-domain output signal.

Cyclic Prefix copies a fixed length of samples from the end of a given time-domain symbol to the beginning of

the symbol to mitigate inter-symbol interference.

Preamble Generator inserts a known training sequence into the transmitted stream for various synchronisation

functions.

RF Transceiver maps the real parts of the time-domain sequence to in-phase sub-carriers, and the imaginary
parts to quadrature sub-carriers. Performs mixing to 5.65 or 5.83 GHz. Gives the mixed signal to the antenna for

transmission.

The receiver consists of two separate passes. One pass performs the synchronization and no tangible data is
throughput into the system. The second is the data pass, which occurs after the system is synchronised and

trained.
In the synchronizing pass, we have:

RF Transceiver + AGC performs the down-mixing and demapping of in-phase and quadrature sub-carriers to

complex time-domain outputs. Automatically controls the gain of the receiver to ensure the input is within the

29

optimal range of the transceiver’s ADC.
Timing Recovery uses the known short preamble sequence to determine the frame boundary.

Frequency Offset Detection implies the frequency offset by comparing the phase of samples in the one half of

the long preamble sequence with identical samples in the second half of the long preamble sequence.

OFDM Demodulator demodulates the time-domain signal to a complex frequency domain signal. The constel-

lation is likely to now contain imaginary components due to phase disturbances in the channel.

Preamble Gains + FEQ estimates equalizer gains for data equalisation using the long preamble training se-

quence.
In the data pass, we have:
RF Transceiver + AGC common to the synchronising path.

Coarse Frequency Offset Correction applies a phase gain to coarsely account for frequency mismatches in the

mixing frequency and doppler! effects.
Remove Cyclic Prefix removes the portion of the signal likely to have been affected by inter-symbol interference.

OFDM Demodulator demodulates the time-domain signal to a complex frequency domain signal. The constel-

lation is likely to now contain imaginary components.

Pilot Interpolation + FEQ performs an update on the frequency gains based on interpolation of the pilot tones.

Applies preamble gains to data tones for coarse equalisation. Applies pilot gains to data tones for fine equalisation.

Demapper performs hard-decision decoding on the frequency sub-carrier constellation, and outputs a binary

sequence.
Deinterleaver reconstructs the interleaved data to overcome channel burst errors in FEC.

Viterbi Decoder implements the Viterbi algorithm to decode the convolutionally encoded sequence.

5.1.2 Data Format

The data types were able to be reflected in the receiver modules, due to the use of hard-decision decoding!®.

Before the team started programming the data pass, the data types of Figure 17 were decided on to assist with

design modularity. The benefits of this arrangement extends beyond modularity and also had enormous benefits

108ee further discussion in Section 5.2.1.

30

in the ease of debugging the data pass. Because we were able to clearly define the boundaries of the OFDM
symbol throughout the code, not only could we recognise faults more easily, but it resulted in no costly data format

re-arrangements inside the mapping module.

- — >

} 32-bit ‘
H IFFT output buffer
P B /
] Mapper output 2 AFE input buffer
: buffer
. 3 /
2 Shared 05 Memory i IFFT input buffer
: ’ !
o | =
(N | L L | -
X /- \ / \ \ L
\ / \ /’ \ A /
o f I \ | \ f’
— ~— T |
Conv Encoder Interleaver Mapper OFDM Modulator

Figure 17: The established data-types of each algorithm, for the purposes of optimisation and clarity.

5.1.3 Inter-module rate mismatch and latency

Each module in the data pass has associated with it both latencies''and internal memory, sometimes a large array
containing histories of past data. The two primary examples of these are the Viterbi decoder, which must store
large amounts of trace-back data, and the interleaver module which must access one large block of data at a given

time to perform its operations.

The processes external to these functions do not, however, want the additional complexity of slowing down and
speeding up data throughput based on the state of the Viterbi decoder and interleaver. To counteract these effects,
internal ping-pong buffers were employed in the relevant modules to ensure a constant data input stream and

constant data output stream could be interfaced to.

Once the ping buffer is full and the pong buffer is depleted, the ping and pong buffers can switch places.

11See the software latency description diagram in Figure 67

31

Input Ping Input Pong Qutput Ping Qutput Pong
FULL

|

|

|

:

: |
: F .F'
: Grows Grows

|

|

|

|

|

|

with W's Depletes Process with X's Depletes

output with X's X output with Z’s

input

input

Process W OQutput Process Z Input
| |
— —
:EMPTY :
| |
I Interface to Interface to
| process X process Y |
| |

Figure 18: Use of ping pong buffer memory structures to decouple the inputs and outputs of various data-flow

modules.

5.2 Encoding Scheme

5.2.1 Outline

As already mentioned, the digital base-band design of the CubeSat has been predominantly based on a WiFi
PHY. This is largely due to its extensive documentation, but also since it is a high data rate protocol employing

convolutional codes.

Output Data A

Output Data B

Figure 19: WiFi convolutional encoder topology, with constraint length k = 7 [7].

Convolutional codes are supported in the TigerSHARC hardware as efficient integer/fixed-point path metric calcu-

lations. In other words, it supports both soft and hard decision decoding system architectures.

5.2.1.1 Hard decision decoding

For the purposes of this design we have elected to use hard decision decoding, despite the additional ~ 2dB offered

if soft-decision decoding is pursued, illustrated in Section 5.2.4. This decision was not a result of increased Viterbi

32

algorithm complexity. In fact, employing soft decision decoding in the TigerSHARC’s architecture would not

contribute to programming or computational complexity inside the Viterbi trellis itself.!?

Using soft-decision decoding requires the use of more complicated fixed-point data types. The add-compare-select
structure used for the efficient Viterbi decoding can take fixed-point branch metric inputs of 8-bits in length, which
would result in a soft-decoding quantisation precision of 28—271 at the output of the mapper. Since the TigerSHARC
can operate quite efficiently on 16-bit operations, the 8-bit soft-decision decoding would be the most practical form of
soft-decision decoding for the system. Symbols using smaller bit-string representations would suffer in performance

due to the difficulty in separating the data formats during deinterleaving.

Viterbi < Deinterl | Demapper
Decoder elnterieaver (BPSK)

Figure 20: The deinterleaver module also must be compatible with any changes to the data-type made by the
mapper for the Viterbi decoder.

The inefficiencies and complexities that come with the soft-decoded data types inside the deinterleaving module was
the major deterrent to electing not to support soft-decision decoding in the initial build. This would add significant
memory requirements to the system, since what was once a single information bit is instead mapped into an 8-bit
fixed point number. Since the system is trying to maximise the data pass’ resistivity to channel burst errors, and
TigerSHARC memory is limited, it would be counter-productive to reduce the interleaving memory capacity by a

factor this large without further optimising the compile-time memory distrubution inside the TigerSHARC.

Furthermore, the additional computational requirements of the interleaving brought about by the increased number
of memory accesses in the DSP would most likely push the number of clock cycles over the limit imposed by our

cycle budget, if not performing any assembly level optimisations.

5.2.1.2 Flushing and state management

The convolutional coder has been designed to operate with a flushing efficiency of 1/32; after every 32 symbols the
convolutional state is returned to zero. This is to prevent the propagation of burst errors through the convolutional
trellis without reducing the coding gain of bits located at the tail of the input sequence. This is an effect the system

would have suffered if we were to have simply truncated the tail bits, without flushing the system with 0’s.

States were maintained inside the convolutional algorithms by employing static variables and static arrays where
possible. These behave as global variables, only the variable’s scope is secured exclusively to the called function.

Hence, they do not have the unreliability associated with global variables. By avoiding arguments being passed in

128ee Section 5.2.3.1 for trellis architecture details

33

and out of functions the code became clearer at the interfaces and resulted in fewer memory accesses required by

the DSP.

5.2.2 Encoder implementation

The encoder is structured in its simplest FIR form.

0
Input at Switches
rate R at rate 2R
Interleave output 0 with
output 1
ulk] ofk]
—> » S0 — Sl > S2 —
ya Output at
v rate 2R
o +)P S
1 o

Figure 21: The implemented k£ = 4 convolutional encoder.

It differs from the WiFi standard in that it can only achieve a k = 4 add, without using more than one trellis in

the decoder.

Optimisation lies in the subtlety of how the XOR’s are executed inside the DSP. It is easiest to think of a convo-

1
lutional coder as operating on a bit-by-bit basis. A rate 5 convolutional coder will produce two output bits for a

given input bit when each of the relevant states have been XOR-ed. Fortunately for the cycle budget, the DSP is

not restricted to bit-wise XORs — 28 results can be easily computed in what otherwise would have produced only

one result. See Figure 22 for illustration.

i) i Hﬂﬂn

32-bit input
word

Initial state

(1): Initial state
appended with
input

(2): (1) shifted
by 3

(3): output—0
path

(4): Next state

Figure 22: Illustration of an optimised 32-bit encoder algorithm.

34

The green squares of Figure 22 indicate the state bits, while the red bits indicate invalid results. The state can be
updated by logic right-shifting (1) by 24, the number of data bits in a symbol. '+’ indicates the addition of two

elements over the binary field.

Clearly, this encoder implementation decreases in complexity by a factor of two if we were to use 64-bit additions,
or 4 if they were 128-bit additions. The TigerSHARC would indeed be capable of these changes since it is a
128-bit processor. These changes were, however, not pursued in favour of a clear definition of the OFDM symbol
boundary through the data-pass, see Figure 17 and associated reasoning. The encoder performs the exact same
set of operations for the second output stream, only with additional right-shifts representing the two middle shift

registers in Figure 21.

The question remains: how to perform the convolutional bit-interleaving to merge the two output sequences? The
TigerSHARC architecture provides the solution with a 64-bit register load operation that takes the upper 32-bits
and interleaves with the lower 32-bits when moving an operand into the CLU [6]. This particular command can only
be executed via the assembly instruction XYTHR1:0 = R3:2 (I) ;; which cannot be performed using compiled
C. This can be easily achieved through using the asm () command outlined in the TigerSHARC compiler manual

[35].

5.2.3 Decoder implementation

One of the most significant challenges in designing the base-band algorithms was implementing the Viterbi algorithm
efficiently in the TigerSHARC environment. One of the reasons the TigerSHARC was selected was due to the
presence of the CLU, which can perform operations in parallel with ALU and IALU instructions'®. To add to
this challenge, Analog Devices do not supply any example code for implementing Viterbi in the TigerSHARC, and
nor are there any sufficiently descriptive implementation reports online. This section will serve to demystify the

implementation of Viterbi in the TigerSHARC for future MSP developments.

5.2.3.1 TigerSHARC trellis architecture

It is worth mentioning that the trellis structure employed by the TigerSHARC is to be used for more than just
the Viterbi algorithm, and thus has been presented in a more general and non-descript manner by Analog Device’s

engineers.

This said, the diagram indicates that the trellis can perform path metric calculations on up to 8 states, using
branch metrics defined by [y1, Y2, ¥3,74]. In other words, we will be completely describing the branch metrics of 16
out-going transitions with a set of only 4 numbers. Note also that each state’s branch metric values ++ are always

mirrored by their negative values Fv on the partnered out-going branch.

13See Section 4.3.2

35

Stage = n-1 Stage =n Stage = n+1

000 O

001 O

O

011 Q
+Y,[n+1]
+V,[n+1]

e
+Y¥,[n+1]

101 Y, In+1] Q
+¥,[n+1]

110 ¥, In+1] Q
+V,[n+1]

Figure 23: The available trellis structure as presented by Analog Devices in the Programming Reference |6].

To understand why this is possible, it is essential to redraw the trellis diagram and consider a mock input sequence.

Notice the separation of individual butterflies in Figure 24, each containing symmetry about their vertical centre.
Consider that the trellis, at some stage n, receives an input of 01. The topology indicates that out-going branch
metrics need to be the negative of each other for implementation in the TigerSHARC. Let’s define a transition
yielding 01 as contributing a branch metric of b,,[n] = +1, a transition yielding 10 as contributing a branch metric

of by, [n] = —1, while a transition of 00 will contribute b,,[n] = 0 to the path metric. More formally:
b [n] = —d(r[n],7) + 1 (6)

where:

e d(r[n],r[n]) := w(r[n] — #[n]) is the traditional definition of the Hamming Distance of the received sequence

r with some estimated transmit sequence 7 at stage n.
e b,,[n] is the calculated branch metric at stage n.

The branch metric calculations related to other received sequences are produced using (6), and are found in Table

10.

Finally, to see why a b,,, has been defined as a decreasing affine function of the Hamming Distance d(r, #*), we need
to observe the operation of the add-compare-select (ACS) function employed in the TigerSHARC architecture, as

shown in Figure 25.

36

b, | 00 01 10 11
00 1 0 0 -1
01 0o 1 -1 0
10 0 -1 1 0
1(-1 0 0 1

=3

Table 10: A table of branch metrics for possible binary input pairs and trellis outputs.

Figure 25 shows that the 8 path metrics related to each state are stored inside registers TRn and TRm, which each

utilise 16-bit fixed-point representation. The Rm register stores the four branch metric quantities [y1, v, ¥3, V4.

The function selects the maximum of the path metrics of state n after combination with the branch metrics for
preservation in state n—+1. Therein lies the logic that a predicted match adds 1 to the path metric, while a complete
mismatch substracts 1. It follows that the path metric calculations need to be initialised at a reference of pg = 0,

rather than a traditional reference of py = —oo.

The ACS function also outputs a single bit, 0 or 1, to identify if the previous state was obtained via the transition
from TRn or from TRm respectively. This is then stored in the Trellis History Registers (THR) which become the

basis of trace-back routine employed in C.

Using the 8-bit signed integer representations of 1 as 0x01 and -1 as 0xff, we are able to construct Table 11;
a description of the 32-bit branch metric words loaded into Rm under a particular received sequence r. This is
achieved by tracing back through Figure 25 to determine under which conditions each branch metric is added and

subtracted from the path metrics.

The ACS input/output structure in Figure 26 returns the correct convolutional outputs when simulated in VDSP++,

where the branch metric register Rm is defined by Table 11.

r Rm

00 | Ox££f0000£f£f
01 | 0x00010100
10 | Ox00££££00
11 | 0x01000001

Table 11: 32-bit words containing the four 8-bit values, y; through 4, concatenated left-to-right.

37

TRn

TRm

TRn

TRm

TRn

TRm

TRn

TRm

Stagen

Stage n+l

001

1\00

L@
'@

001

1\01

0\01

010

=
=

110

0\0O

0\10

L@

1\11

Figure 24: A re-ordered Viterbi trellis diagram.

38

1
r@

TRnd (4 * 16b) TRmd (4 * 16b) Rm (4 * 8b)

|S3]sS2]s1[so] [S3]s2]s1]so0] (B3]|B2|B1]|B0|
| 1 [l

Y N b

{1
O)
Ilp‘_

SHONCORONSO

=511 | [

k4

—
1 1 [[[[T |
TRsq (8 * 16b)

r
—

._=
O
o
0)
O
<
) g
O}

< .
r
L L 4 L 2 w L J w 1!1 rﬁ\'l)r v ¥y YyYY¥*.7

THRs[1:0]
Bit Selection

Figure 25: The field logic ACS function used by the TigerSHARC to update Viterbi path metric data.

TRnd

TRmd Rm
Stagen | 000 100 010 110 001 101 011 111 Vi Va Vs Va
Stage n+1 000 100 010 110 001 101 011 111

Figure 26: Hlustration of the location of the state variables in the inputs of the ACS structure.

39

5.2.3.2 Trace-back

The trace-back routine is comparatively simple when compared to the effort required to bring up the forward-
routine. This is largely because there are no field logic structures in the DSP’s CLU to assist with trace-back, and

instead we must implement the C code as efficiently as possible.

The trace-back routine employed a look-up array of 8 different states as follows in Figure 27.

typedef struct State {
int previ[2];
unsigned int recBit;
int tbPos;

} State;

Figure 27: State structure employed in C for the trace-back routine.

where
e prev[2] contains the preceding states, addressable by the relevant THR bit.
e recBit contains the bit that was transmitted to push the encoder into this state, i.e. the decoded bit.

e tbPos indicates the correct position of the THR bit in the 8-bit output word. The order of bits in the THR

output word is the same order as the states are positioned in the 128-bit output register of Figure 26.

Before trace-back begins, we must identify the state which has the highest path metric associated with it, repre-

senting the node with the largest likelihood of the correct sequence.

Finally, trace-back can occur over a simple iteration of the State structure of Figure 27. The benefit of using
this structure is that the trace-back can occur with absolutely no comparisons, since the previous states are simply
addressed via the prev vector. This trade-off of memory versus comparison operations is one that has been exploited

many times in the code, and is made possible by the enormous 24-Mbit memory capacity of the TigerSHARC.

5.2.4 Coding Gain

The combination of the constraint length k = 4, rate % convolutional encoder and its associated hard-decision

viterbi decoder module resulted in a coding gain of ~ 5dB for a target BER of 1075, as seen in Figure 28.

The choice to move to soft-decoding would add an extra &~ 2dB of channel gain. However, as mentioned in Section
5.2.1, the development of the soft-decision decoder was not performed for this project build, since the additional

computational complexity and development time in the deinterleaver module was too restrictive for the delivery of

40

this project.

SNR vs BER curves

0 T T
— Uncoded BER curve
'\ — Hard-decision BER curve
-1 _\ Soft-decision BER curve | -
|
H\
2+ ~_ i

_6 i i i i i
0 2 4 6 8 10 12

Channel SNR (dB)

Figure 28: BER performance of the uncoded OFDM channel, and soft-decision and hard-decision coded channels.

This model assumes no inter-subcarrier interference, and has thus been simulated as a BPSK system.

5.3 Interleaver and Deinterleaver

5.3.1 Outline

It is well-known that the BER performance of convolutional codes suffers drastically when the input bit string has
burst errors [36]. Burst errors occur frequently in the space channel due to fluctuating sun activity or from co-channel
interference. One solution to counter-act burst errors is to append a Reed-Solomon code and block-deinterleaver
to the output of the convolutional decoder, to form a concatenated code, correcting for bursts at the output of the
Viterbi decoder. This unfortunately can not be implemented without assembly level optimisations on the current

system, due to the computational complexity required and the lack of finite-field logic in the TigerSHARC processor.

Figure 29 demonstrates a mock-interleaver of bit depth d = 5. Clearly, if a larger bit depth was selected, the bit

error density at any given point in the output will be reduced.

41

1 symbol
-+

Input
data HEER HEEEEENE
Interleaved
data ..-.....-...
Channel

Received data . ..--.-

-
Burst sequence

Dei I d
B B LB B DN

Figure 29: Hlustration of an interleaver counteracting channel burst errors.

5.3.2 Interleaving solution

Bit-wise interleaving is a second method of burst correction, and can be instead implemented after the encoder and
before the decoder. This has the effect of rearranging the output bit-stream so that channel burst errors can be
separated in the channel with 67 symbol’s worth of bits separating them. Thus, assuming that no more than one
burst error occurs in a given interleave length, if a burst error with a duration of up to 1ms occurred, no two bits in
a set of 67 symbols would be compromised. Unfortunately, the trade-off is burst errors generated inside the Viterbi

decoder can no longer be corrected at the output.

The misfortune of the trade-off mentioned above is addressed however, by the target SNR and the simulated BER
performance at the input output of the Viterbi decoder. The SNR of the system has been designed to achieve a
codeless BER' of ~ 1075, and is thus much lower than the observed convolutional threshold input BER. of 0.02.

For the purposes of this report, an interleaving bit-depth of 67 symbols was selected, primarily because depths
exceeding this pushed the TigerSHARC memory into unbounded regions, resulting in run-time errors. Since solar
flares have variable duration, it is difficult to pick a burst length to correct for, instead the system provide as much

interleaving protection as the hardware allows.

5.3.3 Implementation

Two possible interleaving solutions were proposed, each with their merits and disadvantages.

14See Section 2.2

42

5.3.3.1 Cycle-optimised interleaver

The cycle optimised interleaver was consistently able to achieve average cycle counts per symbol of ~ 400 cycles.

This was achieved by using the same interleave command issued in the convolution encoder!®.

Input

data NN pEEE EETAEEE EEEETEEe
21 [l H H B B B B FENENEYE IS EeEs

Stage 2 HE E= HE EN "EENTEEN TEENTEE.
s [HEEEE N EEESEE N EEESE N EEEEE

Figure 30: Cycle-efficient interleaving to an arbitrary bit-depth 2%.

As demonstrated, this form of interleaver can interleave to a bit-depth of 2V in only N data passes. Since the DSP
stores information in integral blocks of 32- and 64-bits instead of one large bit stream, the program needed to keep

track of where the updated boundary of an interleaved symbol while it was performing an interleave pass over a

given stage.
To deinterleave, the inverse logical operation was formed by interleaving the n'* stage N times before passing the

result to the (n — 1)*" stage. This added complexity resulted in a deinterleaver cycle count of ~ 1600 cycles.

5.3.3.2 Alternative interleaver

The interleaver ISA optimisation outlined above came at a significant cost to the data-flow outlined in Figure 67.

e For the interleaver to be optimised, it required the input bit format remain in a 32-bit format, not the 48-bit

format desired for clear definition of the symbol boundary.

e This block interleaver required ’bursts’ of computational intensity; disrupting the constant symbol-by-symbol

throughput of the data-pass.

In order to address both of these concerns, an alternative bit-wise interleaver was developed to maintain a 48-bit

symbol boundary and to distribute the interleaver’s operations uniformly over the transmitted data flow.

A simpler bit-mask-shift interleaver was implemented. A prime-number symbol depth of 67 was chosen so the

binary data would be mapped to unique locations in the interleaved sequence when looping through the circular

interleaver output buffer.

This interleaver satisfies the two design requirements, but still suffers a latency'® equal to the interleaver block

158ee section 5.2.2
16See section 5.1.3 for methods to combat latency

43

size and unfortunately is far less efficient than the cycle-optimised interleaver, with an average cycle count ~ 1200

cycles.

While the performance was considerably diminished, both interleaver and deinterleaver modules were able to be fit
inside their corresponding cycle budgets. Further assembly optimisation can be expected to reduce this count if

future MSP teams wish to develop the physical layer.

5.4 BPSK Mapper and Demapper

The OFDM subcarriers shall be modulated using Binary Phase Shift Keying (BPSK). The mapping is to convert a
binary bit 0 or 1, obtained from the interleaver, into a 64-bit complex number —1+ 50 or 1+ j0, where the lowest 32
bits are for the real part and the highest 32 bits are for the imaginary part, so that the data can be then processed
by the 64-floating-point IFFT function.

The mapper first inserts the 4 pilot subcarriers and 12 pad bits (zeros) into an OFDM symbol, which increases the
48-bit symbol into 64-bit. It then maps each bit in the symbol to the corresponding 64-bit complex numbers, 1 or
-1, in BPSK.

5.4.1 Pilot Subcarriers

In OFDM, 4 pilot subcarriers are inserted in each symbol for coherent detection to remain robust to fine frequency
and phase offsets. These pilots are located on subcarriers —21, —7,7, 21, as shown in Figure 31, with values 1,1, 1, —1
respectively. This is achieved by establishing known frequency and phase references that can be detected at the
receiver side, so the frequency equalizer (FEQ) in the receiver can estimate and compensate for disturbances. The
subcarrier pilots shall also be modulated with BPSK. In order to avoid DC offset in the A/D and D/A converter,
and to prevent carrier feed-through in the RF system, the subcarrier at 0 is also nulled, which is usually seen as

a pad bit. Since our symbols are BPSK modulated, the pilot subcarriers and data subcarriers can be processed

together.
dU d4 P—2]d5 dITP—? dlB d23DC d24 d39 P? d3U d~42 l:'ZI d43 diﬁ'
i i | i
| | | |
'Y X ! L X : T X sew : L X X : [X X)
: ! 1 |
| 1 1 | |
26 -2l - 0 7 21 26

Subcarrier Numbers

Figure 31: Subcarrier Frequency Allocation [7]

44

5.4.2 Pad Bits

The remaining 11 pad bits are allocated at both sides of the OFDM symbol’s spectrum to serve as the signal’s

guard band. At the edges of the band, the transmit spectrum mask begins to fall, as shown in Figure 32. Thus,

to avoid loss of the desired signals in the frequency domain and make sure the transmitted signals are within the

spectrum mask, we place nulls at the edge sides.

Power Spectral Density (dB)

Transmit Spectrum Mask
(not to scale)

Typical Signal Spectrum
(an example)

| | |
I I [I >
—2.75 -2.25 fc 225 275 5 7.5
Frequency (MHz)

Figure 32: Transmit spectrum mask for 5 MHz transmission [7]

To make the OFDM symbols match the OFDM modulation equation, the data subcarriers number 0 through 47

need to be mapped to the frequency offset index -26 to 26, while the pilot subcarrier locations and the Oth (DC)

subcarrier shall be skipped. The mapping relationship is shown in Figure 33.

‘:’*i;” - ‘23:‘?” | 21 |20ws] 7 st o 1to6 7 latozo| 21 |22to28|27 to 3
pad bits |data bits m‘;}”;';m data bits suﬂgtm data bits| . [|data bits M‘;‘E’:m data bits suﬁ;gtm data bits | pad bits
0s |24t028 29 to 41 47t0 47 Dto 5 61018 19t0 23| o0s
er er er er
Pilot 1 Pilot 1 Pilot 1 Pilot -1
| | | |
| | | |
Pad bits0 | Databits | Data bits | Data bits Data bits | Data bits | Databits | Pad bits0
24-28 : 29-41 : 42-47 0-5 : 6-18 : 19-23
1 | | 1 1
-32 -26 -21 -7 0 7 21 26 31

Figure 33: Subcarriers locations after frequency shift

45

5.4.3 BPSK Modulation

Subsequently, the 64-bit OFDM symbols are modulated into 64 complex numbers. The modulation scheme is BPSK,
where the encoded and interleaved binary bits are mapped to the corresponding complex numbers bit-by-bit: in
BPSK the data stream is divided into groups of 1 bit and then mapped into complex number, I + j@ representing

the 1Q constellation, as shown in Figure 34. The output value d is normalized by multiplying a normalization factor

Kyop-

d=(I+jQ)x Knop (7)
BPSK Qj
by
+IT
0o | 1
.y +T [
—ir

Figure 34: BPSK Constellation [7]

In BPSK, Kyjop = 1. Therefore, the output value is 14-j0 if the input of the mapper is bit 1 and -1+j0 if the input
is bit 0, as shown in Table 13.

Input bits ‘ I-out ‘ Q-out
0 -1 0
1 1 0

Table 12: BPSK encoding table

Both the real part and the imaginary part of an output value are stored in IEEE754 single-precision floating-point

format (Binary32), so that they can be interpreted by the 64-floating-point FFT function in the DSP.

5.4.4 Binary32

The Binary32 format consists of three parts as shown in Figure 35, where the decimal value is determined by

Equation 8.

value = (—1)¥8" x (1 + (mantissa)'?) x 2exponent—127 ()

46

1 |
T | |

Sign Exponent [8 bits] Mantissa [23 bits]

Figure 35: IEEE754 Single-precision floating-point format (Binary32) [§]

The Binary32 is also used by the float data type in C language, so when programming the mapper, the output can
be simply stated as float rather than explicitly converting them into a hexadecimal representation. The relationship

of conversion is shown in Table 13.

Highest 32 bits Lowest 32 bits

Imaginary: 0 Real: 1/-1

Binary32: 0x0000 0000 | Binary32: 0x3F80 0000 / 0xBF80 0000
float: 0 float: 1/-1

Table 13: BPSK encoding table

5.4.5 Demapper

The demapper is just the inversion of the mapper. At the receiver side, it BPSK demodulates each received complex
numbers +a =+ j0 via a hard-decision back to into digit bits 1 or 0 and then removes the pilot subcarriers and pad

bits to get back the 48-bit OFDM symbols, which will later be deinterleaved and decoded.

5.5 OFDM modulator and demodulator

5.5.1 FFT optimization in DSP

IFFT and FFT are used to implement OFDM modulator and demodulator. The IFFT transforms the frequency
domain data into time domain sampling points and FFT perform the opposite operation. A demonstration of a

standard 16 point FFT structure is shown in Figure 36.

The C code for this structure implemented in Tigersharc DSP takes approximately 5000 cycles. The main reason
for this high cycle count is due to inefficient access to the DSP’s memory interface and poor organization in the

compiled data structure.

As shown in Figure 14, TigerSHARC DSP supports dual quad memory accesses (J-BUS data and K-BUS data),
SIMD operations via the dual computational blocks, and four simultaneous instructions in one cycle (VLIW).

However, without reconstructing the assembly algorithms, it is impossible for compiler to fully utilize all of these

47

Figure 36: standard 16 point FFT structure [9]

resource in DSP and generate very efficient code. The Analog Devices engineers have constructed an assembler

reference document and instructional on how to efficiently program N-length floating-point FFTs.

In order to take advantage of fast quad memory access, the butterfly structure has to be changed to accommodate
this feature. The data input to DSP is 32-bit real and 32-bit imaginary. If the data reads for butterfly are sequential,
two complex data values could be read out in one cycle instead of 4 cycles. Taking this into consideration, the FFT
structure could be reorganized as in the Figure 37 [9]. Thus, the operations for the new structure needed in a single

butterfly process is shown in Table 14.

Since there are two computational blocks in the TigerSHARC, two adjacent butterflies could be processed in a
SIMD fashion. Combining this feature with quad memory access [9] demonstrates that the Fetch F1, F2, K2, F4 for
butterflyl can be performed in one cycle and computed in the X-Compute block, while butterfly2 could be arranged
in Y-compute block in the same cycle. Because the two adjacent butterflies are processed at the same time, the S1
and S2 for the two butterflies can be stored into memory in one cycle quad memory fashion, and S3 and S4 are
stored in another cycle. The A3 and A4 could be combined together due to the single add/subtract instruction in
the DSP. Totally, two adjacent butterflies only consume two data fetches, four multiplications, four ALU, and two
memory store. This only yields to four cycles pipeline execution in the DSP because of the VLIW structure. So far,
the architecture provides two spare fetches that have not yet been occupied, so the twiddles can be fetched from

memory in these two idle fetch cycles. The new operations table is shown in the Table 15.

In the 64-point FFT, there are 6 stages and 32 butterflies for each stage. Since 4 cycles for butterflies is achievable in

48

Mnenonic | Operation

F1 Fetch Real(Inputl) of butterfly
F2 Fetch Imag(Inputl) of butterfly
K2 Fetch Real(Input2) of butterfly
F4 Fetch Imag(Input2) of butterfly
T1 Fetch twiddle Real

T2 Fetch twiddle Imag

M1 K2*T1

M2 F4*T2

M3 K2*T?2

M4 F4*T1

Al M1-M2=real(input2*twiddle)
A2 M3-+M4=imag(input2*twiddle)
A3 F1 + Al=real(Outputl)

A4 F1-Al=real(Output2)

Ab F2+A2=imag(Outputl)

A6 F21A2=imag(Output2)

S1 store(Real(Outputl))

S2 store(imag(Outputl))

S3 store(Real(Output2))

S4 store(imag(Output2))

Table 14: FFT operations in a single butterfly

49

Figure 37: re-organized 16 point FFT structure [9]

this DSP structure, the total cycle count with overhead consideration will be 6(stages) x32(butter flies) /2(butter flies) x
4(cycles) = 384(cycles). Considering the overhead for software pipe-lining and context switch in the assembly func-

tion, the 550 cycles result in simulation is reasonable.

5.5.2 IFFT implementation using FFT structure

The inverse FFT can use the same FFT structure, only swapping the real and imaginary parts of the input and

output with a scalar. The inverse DFT equation [37] is given by:

N1 (j27rkn)
o) = >0 Xl N)
k=0
1= 27kn 27kn
= — (Xreat(k) + j Ximag(k))(cos | —— | +jsin | ——)) (10)
¥ 2)+ (5 ome (55)

After some arrangement:

z(n) = %E[Xreal(k)cos <$) — Ximag(k)sin (%)] + §[Xrear(k)sin (%) + Ximag (k)cos (27;\1;11)]

(11)

50

Mnenonic | Operation

K1 Twiddle address mask

K2 Twiddle Fetch

K3 Twiddle address increment

F1 Fetch input data for butterflyl

F2 Fetch input data for butterfly2

M1 real(lower input data)*real(twiddle)
M2 imag(lower input data)*imag(twiddle)
M3 real(lower input data)*imag(twiddle)
M4 imag(lower input data)*real(twiddle)
Al M1-M2=real(input2*twiddle)

A2 M3-+M4=imag(input2*twiddle)

A3 real(inputl)+/-Al=real(outputl,2)
A4 imag(inputl)+/-Al=imag(outputl,2)
S1 Store(outputl, two butterflies)

S2 Store(output2, two butterflies)

Table 15: Optimized FFT operations for two butterflies in parallel

Assume Xgyap(k) = Ximag(k) + jXrear(k), the DFT X0, (k) is equal to:

- (j27rmn>

w(m) = ;}xm(n)e N (12)
- N_O Xoagtmeos () X aaom)sin (2)] 4506t (micos () = Xy m)cos (2

(13

It is easy to find the that 2(m) is the swap of the real and imaginary parts of z(n) with a scaling. This implies that
the IFFT could be calculated by swapping input, performing the FFT, and swapping output. The block diagram
for IFFT implementation by using FFT is given by Figure 38.

Xreal (k) /N — Xreal (n)

FFT

Ximag (k) i » Ximag(n)

Figure 38: IFFT calculation by using FFT

51

5.6 Cyclic Prefix

The cyclic prefix (CP) refers to the prefixing of a symbol with repetition ends. In this project, the cyclic prefix is
the last 16 complex numbers of a symbol copied and prefixed to the head. The symbol is the 64 complex numbers

output from the IFFT.

The cyclic prefix serves as the guard interval during transmission, which eliminates the inter-symbol interference
(ISI) from the previous symbol. In a practical transmission, it would happen if a symbol is delayed, so its end
part would interfere the next symbol, as shown in Figure 39. A solution to this problem is to introduce some time
gap between two symbols, and fill this with the cyclic prefix. The cyclic prefix is a repetition of the end part of
the symbol, and is pasted to the head of the symbol, as the dash line shown in Figure 40. Therefore, the actual
data in the symbol two could be safe even if the delay happens in the first symbol, and only the cyclic prefix is
interfered. The length of cyclic prefix is equal to the guard interval. The guard length is 16 [38], so the last 16

complex numbers of the symbol shall be copied and pasted.

Symbol 1 | Symbaol 2

Y

Intersymbal interference

Figure 39: Inter-symbol interference caused by symbol 1’s delay [10]

Symbol 1 symbal2

Copy and Paste

Cyclic Prefix Cyclic Prefix

Figure 40: The cyclic prefix introduced into symbols [11]

Finally, the cyclic prefix allows the linear convolution of the channel to be treated as a cyclic convolution, which
is the time-operation of the DFT. This allows for frequency-domain signal processing techniques in equalisation to

ensure robustness to a multi-path channel.

52

5.7 Automatic Gain Control

Automatic Gain Control (AGC) exists in order to scale an input signal so that it occupies the full input scale of
an ADC, in order to maximise the resolution of the digitized representation. The received signal will exhibit wide
power swings over the course of a single transmission due to differing free space losses and atmospheric attenuation,
so a single time-invariant scalar is not appropriate: AGC is required instead. Since the system doesn’t operate in
real-time, this Capstone report and the hardware demonstration conducts AGC as described in Section 6.4. The

method outlined below is a proposed solution for AGC once a real-time system has been established.

In IEEE 802.11 the header of the OFDM frame displays Short Training Symbols (STS) and Long Training Symbols
(LTS). The first few symbols are shown in Figure 16, and the STS is intended to let the receiver detect the OFDM

signal and stabilize the AGC mechanism.

To ensure an incoming frame is not dropped, the AGC must quickly converge and also stabilize the AGC gain when
the OFDM symbol is received. The AGC finite state machine shown in the Figure 41 is proposed for this purpose.
When some signal is detected at the input, a fast convergence for AGC is required. In this solution, the AGC Fast
Attack 1 is intended to detect a stable OFDM signal and get a stabilized AGC gain for OFDM preamble detection.

At this time, the auto-correlation in synchronization is disabled because the AGC has not been settled [39].

When the AGC gain settle flag is asserted from AFE, the AGC Fast Attack 2 state is triggered and synchronization
is enabled. Once the short preamble sequence is detected by the auto-correlation, the AGC should be locked or
changed to slow attack mode. This will prevent signal corruption due to unexpected interference or gain fluctuation
in the payload receiving stage. If there is a consecutive OFDM frame been detected after one OFDM frame, the
synchronized AGC Fast Attack (AGC Fast Attack 2) is recalled by the state machine. The digital system is disabled
after a time delay if no OFDM frame is received and return to Signal Detection state. The details of each state is

shown in Figure 42.

5.8 Synchronisation (Schmidl’s Method)
For the offline system build that is the deliverable of this Capstone project, all synchronisation techniques proposed

here-in have been implemented in the MATLAB environment, as opposed to the DSP environment. The efficacy of

DSP implementation has informed the selection of synchronisation algorithms.

5.8.1 Timing Recovery

In Schmidl’s symbol timing method the training symbol contains two identical halves. Multiplying the conjugates

from the first half of the long preamble samples with those of the second half, the phase of the products will be

53

AGC Fast Attack 1
(no Synch)

Signal Detection

AGC Fast Attack 2
(with Synch)

AGC Settle
Model:AGC lock
Mode2:AGC Slow
Attack

Figure 41: The AGC FSM

constant and the resultant magnitude of the sum will become a large value. This large value indicates the acquisition

of data [40]. The transmitted baseband OFDM signal is given by:

Ne—1
1 °< ;
Sy = —— Cp - 22NN, <k <N -1 14
k VNZ% (=Ng <k <) (14)
in which N, is the last samples copied to the CP, IV, is the number of tones, and N is number of IFFT points. The

received samples at the receiver could be expressed as:

-1
Sy = ej2‘n’yn/1\/ Z Sk—te—m - hm + o (15)

m=0

in which v is the carrier frequency offset normalized with OFDM tone spacing 1/(NTy), te is the delay of symbol,
hp, is the channel reponse with channel length 1, and ng is Gaussian random noise. If two identical sequence are

transmitted with the pattern:

S, = [A, A (16)

Assume the first symbol is S;, and the second symbol is Si 4. The identity of these two symbols will be

maintained after the channel response, except a phase shift (¢) due to frequency offset(Af). The received two

54

State

Description

Input

Next State

Output

Signal Detection

Detect a significant increase in
the signal power level

Free air anolog signals

AGC Fast Attack 1

1. Enable AGC fast attack
2. Enable digital system to prepare
receiving signals

AGC Fast Attack 1

AGC fast attack without
synchronization

AFE AGC settled indicator

AGC Fast Attack 2

1. Enable digital system to start auto-
correlation
2. Stay in the AGC fast attack mode

Signal loss

Signal Detection

After a delay disable digital system

AGC Fast Attack 2

AGC fast attack with
synchronization to detect
short preambles

Synchronization pulse

AGC Settle

1. Enable OFDM timing recovery
2. Disable AGC fast attack mode

Signal loss

Signal Detection

After a delay disable digital system

AGC Settle

The AGC has been completely
settled, and start to receive
the entire OFDM frame

Preamble symbols and
data symbols

AGC Settle

Stay in the state and signal is normal

End of OFDM frame

AGC Fast Attack 2

Prepare to receive preamble and
adjust AGC

Signal loss

Signal Detection

After a delay disable digital system

halves of the sequence are given by:

Figure 42: The AGC FSM

Tin = Sin - el AT + 1o

Regardless of the noise, the relation of two parts are given by:

. ej2‘n’Af(n-|—L)TS +

T1,n+L = S1,n+L o
=Tin- eJZﬂAfLTS + no
2t A fLTs
Ti,n+L =T1n * e’ LT,

Based on this relation, the timing location estimator is given by:

in which

55

(20)

L-1

P(d) =Y (rien - Tatntr) (22)
n=0
L-1
R(d) = Z \Tul+n+L|2 (23)
n=0

As shown in the Figure 45, in every multiplication of r; ,, and r; n41, there is vector been generated shown in the
green line. Since all the these products have the same phase and same amplitude, the vectors could be accumulated

together to estimate the peak power of the timing metric function.

iplication

ultiplication

Figure 43: The accumulated multiplication of timing metric

The OFDM frame contains 10 short preambles, so there will be a number of consecutive peaks the the short preamble
is detected. the number of consecutive peaks could detemine the start of the OFDM frame. The flow chart of the

process is shown in Figure 44.

The simulation of timing metric in one OFDM frame is shown in Figure 45. As given in the graph there are nine
peaks was detected in the short preamble and the symbol boundary could be determined based on the position of

these peaks.

5.8.2 Frequency Offset

Once symbol timing is recovered, the long preamble could be used to estimate frequency offset. As shown in

Equation 20, the phase of the correlation between ry ,, and ry p4r:

¢ =2 AfLT, (24)

56

Receive data and store in the Queue
Queue length is equal to 16 which is
2 short preamble

\

Multiply and conjugate of each first Compute the epergyv of second 8
8 samples to each second 8 samples samples

\

Compute the sum of above 8 products
(P(d))
CC()mpute timing metric M ((D)

v

Count the number of
consecutive peaks

Determine the symbol boundary
Reset the symbol mark in DSP

Figure 44: Timing recovery flow chart

l

Compute the sum of them(R(d))

can be estimated from Equation 22

¢ = angle(P(d)) (25)

When ¢ is smaller than 7, the frequency offset is given by:

¢
Af = 2
f 2w LTy (26)
when ¢ is larger than 7 and z is an integer, the frequency offset is equal to:
2
Af= 2 2T (27)

T 9xLT, ' 2rLT,

In the long preamble, L = 32. The sampling rate is f; = Tis = 5MHz. Therefore, if ¢ is larger than 7, the A f should
be larger than 78.125Khz. In the satellite system, doppler is expected to contribute up to 150kHz of frequency
offset. This being the case, the attitude control team will construct some on-board estimate of the velocity of the
satellite. Since the operating system is able to control the AFE via a SPI interface, the majority of this offset can
be compensated for by a tuned mixing frequency and the remainder by the synchronisation methods postulated
above. Thus, the case for ¢ is larger than 7 is ignorable. If Flight Systems’ measurements turn out to be unreliable,

the synchronisation scheme can be adapted to have a larger acquisition range at the sacrifice of some computational

complexity in the synchronisation pass.

57

_ The timing metric of data frame

05 7

the timing metric M
=]
W

L AAALINOA

0 200 400 600 800 1000
sample point

Figure 45: The accumulated multiplications of the timing metric

Since the symbol timing is acquired from the timing recovery, the location of the long preamble is available. The

flow chart of the process is given in Figure 46'7:

17In MATLAB OFDM synchronization simulation example "OFDMSynchronizationExample" there is bug for applying the frequency

correction. The phase multiplied to signal should be e=327Af7Ts rather than ed2fnTs

58

(::j Receive 2 Long Freambles ti:)
Multiply the conjugate of first
preamble to second preamble

Compute the sum of above
products

(:Eftimute the frequency nffséi:)

Apply the frequency offset to
rest of data frame

Figure 46: Frequency offset correction flow chart

5.9 Frequency Equalization

5.9.1 Outline

Frequency Equalization (FEQ) is a clever technique employed in the satellite’s synchronization and data pass stages.

There are three types of error that FEQ corrects for in the system:
e Sampling phase mismatch.
e Frequency selective magnitude compensation.
e Compensation in channel phase errors.

As such, FEQ is often referred to as a ’fine frequency compensation’ algorithm since it is able to account for
additional phase error after the course frequency compensation module has performed its rectification. FEQ operates
by performing an estimate of the channel using the long preamble training sequence displayed in Figure 16. It then
performs further correction of evolving phase error due to fine frequency offset via pilot tones inserted into the
payload symbols. Since the OFDM framework demodulates into the frequency domain, it is natural to perform
equalization techniques with the sub-carriers, not samples. Currently, for the offline system, the base-band performs
FEQ with the help of MATLAB, with adequate cycles remaining in the DSP architecture to transfer functionality

over on a step-by-step basis.

59

5.9.2 Implementation and proposal

The Least Minimum Mean Square Estimator (LMMSE) is a common method employed to compensate for magnitude

and phase in both fast and slow fading channels [41]. The initial channel estimate in MATLAB is given by:

v, 4
Blzm]
Vorelt] Vo]

Somisbamil

pre

Hpre [k] =

o EHplk]]
Hyrelk] = E[Hppe [k H?, . [K]]

p

where:
e Y, c[k] is the received preamble sequence.
o X,.[k] is the transmitted preamble sequence.
° I:Ipre[k] is the channel estimate based on the preamble training sequence.

Since pilot assisted modulation (PSAM) is used to correct for evolving frequency offset, channel phase and channel
amplitude, it’s necessary to update this estimate with the multiplication of the Hp;[k] throughout the duration of

the data frame.

Hsieh and Wei [41] propose a pilot tone interpolation method via the application of a second order polynomial,
which can out-perform linear piece-wise interpolation methods while maintaining a low complexity. The interpolator

is given by:

H[E| = HmL + 1) = C1 Hy[m — 1] + CoH,[m] + C_1 Hy[m + 1] (30)
_ala+1)
O =——5— (31)
Co=—(a—1)(a+1) (32)
Cy= w (33)
l

when m is the pilot tone number, L is the pilot tone separation, N is the total number of subcarriers, [is the
interval between a given data carrier k and pilot tone at position mZL. This method has largely been selected since

it will not contribute significant complexity to the DSP.

60

5.10 Optimising Code

Currently, the clock cycles consumed by each blocks are in Tables 16 and 17.

Transmitter | Clock cycles consumption
Memory read 35
Convolutional encoder 37
Interleaver 1284

Mapper 571

IFFT 703

Total clock cycles 2630

Table 16: Total clock cycles used in the transmitter data-pass.

Receiver | Clock cycles consumption Comments

FFT 472 Well optimised.

FEQ 2492 Change to fixed-point multiplications.

Demapper 223 Quad memory access.

Deinterleaver 1207 | Bit-wise implementation. Quad memory access.

Viterbi decoder 10567 Quad memory access.

Write to memory 335 Quad memory access.
Total clock cycles 5786

Table 17: Total clock cycles used in the receiver data-pass.

The clock cycles for the transmitter and the receiver are required to be below 8000 per symbol, since the 500MHz
processor has 16us to generate the next symbol. Asserting a limit of 4000 leaves contingency for emergencies and

functionality expansions.

It should be noted that the FEQ costs too many clock cycles. This issue can be optimized if we use the 32-Bit
Fixed-Point Complex Multiplication Instructions [42], which will be executed in the next stage of the project. In
addition, some blocks, even though use only a few clock cycles, still have the space of optimization on the assembly

level.

61

6 Analog Front End

The final system will utilise an Analog Devices AD9364 analog front end chip. This supports central frequencies
between 70MHz and 6.0GHz with bandwidths between 200kHz and 56MHz [5]. Importantly, being desired for
4G applications, it supports OFDM and can communicated with the TigerSHARC over low voltage differential
signalling (LVDS). This constraint removed a significant number of chips from consideration. The team was lucky

enough to receive four of these evaluation boards from Analog Devices as a university donation.

Figure 47: AD9364 evaluation board top and bottom [12]

For the purposes of testing, the centre frequency was set to 2.4GHz. This was done for a number of reasons: no legal
restrictions on transmitting apply in this band, antennas were easy to acquire, and the baluns on the evaluation
boards were optimised for operation below 2.4GHz. A balun is a device that converts a balanced signal to an
unbalanced signal, which is where the name comes from. A simple example of a balun is the RF choke seen on the
end of laptop power charging cables to prevent high frequency electromagnetic signals from being either radiated
from the source or being received by the cable and passing into the system under protection. The main purpose of
a balun is to reject common mode noise while passing desired differential mode signals. Furthermore, 2.4GHz was
an appropriate centre frequency since WiFi transmissions could be picked up and considered in the received signal

as noise. In the absence of other noise-producing circuits, this was acceptable.

6.1 Required Hardware and Software Tools

The DSP and AFE chips are both small ball grid array (BGA) packages that are difficult to rout PCBs for, and
even harder to debug issues. An entire Capstone project could be devoted to routing a six or eight layer board for
the telecommunications system, but the capabilities of the chips must first be tested, and the algorithms running
on these chips must be tested with as little additional complexity introduced as well. As such, an evaluation board

stage was required to test the capabilities of the hardware and the code to be implemented on it.

The AD9364 evaluation board includes the chip itself, SMA connectors for antennas and an FPGA Mezzanine Card

62

(FMC) connector. SMA pigtail cables and and SMA 2.4GHz antennas were purchased to allow the transmitter
and receiver circuits to communicate. The discussed above, the final PCB will utilise LVDS to communicate, which
was designed for communication within the same piece of hardware, such as between the screen and motherboard
of a laptop. It was optimised for low power usage over short distance at the expense of long range, and so is not
appropriate to implement a free LVDS cable. As such LVDS is not supported in the evaluation board packages.
Instead, the pins are broken out into a male FMC connector, so a driver board with a female FMC connector
was required. The board selected was the Xilinx Zedboard as seen in Figure 48, two of which were donated by

Digilent /Xilinx for this project.

Figure 48: Zedboard image [13]

This was chosen partially because of its low $500USD cost. Although these boards were a donation, low cost was a
factor if the team needed to replace broken boards or purchase more. Significant amounts of documentation existed,
and MATLAB provided numerous example Simulink models and MATLAB code to drive the board. Looking further

ahead, the board was also capable of executing the required instructions to allow realtime demonstration.

This board is a breakout for the Zyng-7000 chip, which contains a processor side and an FPGA component as seen
in Figure 49. This meant that the first test to determine whether the hardware was functional consisted of booting
from a bare Linux distribution and controlling some LEDs on the board. Some built-in C code also allowed a scope
to be viewed by connecting a computer screen to the HDMI port of the Zedboard and running the scope program

from the Linux command line.

6.2 MATLAB Implementation

There were a number of ways to drive the AFE. The processor and programmable logic could have been hard coded,

but this approach was not taken for the Capstone demonstration due to time constraints, plus the fact that getting

63

m Processing
EEN

System Interfaces m
m - Interface 1
Fixed
m Peripherals . Peripheral [{mmps Interface 2
S —— Interface 3
7 Series

P bl t Interface N
regrammable Accelerator m
g =

N T

Figure 49: Zynq-7000 chip architecture [14]

the FPGA working would have advanced progress at the tangent to the final objective, since the final flight PCB will
only have the DSP and AFE chips on it. Fortunately, MATLAB provided a satisfactory solution in a significantly
less time: one of the major reasons for selecting the Zedboard was its interoperability with MATLAB. The host
computer and the Zedboard were connected via a Gigabit ethernet connection, which prevented the authors from
implementing an online demonstration. Without flashing the programmable logic of the Zyng-7000, a constant
connection to the host computer was required, which meant that the Gigabit ethernet port of the DSP evaluation
board couldn’t connect to the ZedBoard, as shown in Figure 11 on page 19. Furthermore, learning how to access

the ethernet port through code was likely to be time consuming, and difficult to achieve within the time frame.

Therefore, the idea of hard coding the AFE modules was abandoned in favour of executing Simulink models which
could automatically identify, authenticate and connect with external hardware. sdrRx and sdrTx Simulink blocks
were available as part of the Communications Systems Toolbox in MATLAB, which contained dialogues to vary the
sampling frequency and mixing frequency among other parameters. On the receiver side, code would pull complex
doubles from a data file then transmit them through the sdrTx block. On the receiver side, code was written to
implement synchronisation as described in Section 5.8 and write the synchronised complex doubles to a data file
to be handed back to the DSP. This MATLAB code can be found in Appendix C. Getting the toolchain working

proved difficult due to the multitude of different add-in packages required, but the issue was eventually overcome.

During the first days of testing, egregious bit error rates of 4% were observed when transmitting at 2.4GHz at a
sampling rate of 520.841kHz over an SMA antenna, and this error rate was not reduced when a wired connection
was used. This rate was used first as it was the default, and getting the system functional with this sampling rate
was the first step on building toward 5MHz. Furthermore, no signal power was received when the signal bandwidth
was increased to 5SMHz. By outputting the received bitstream, it was seen that the only bits to ever be in error were

those at either end of the 48 bit symbol. This indicated that the internal AFE filter was causing errors: in fact the

64

default filter settings asserted a passband frequency of 173.61kHz and a -80dB stopband frequency of 217.02kHz, so
data carrying tones 0-2 and 45-47 were being filtered out, and these were often decoded incorrectly. Every OFDM
symbol takes up the full bandwidth, in order to provide subcarrier orthogonality at the given sampling rate, so the
AFE filter was converted to an all-pass. Separately implementing guard-bands is not required, since the OFDM

protocol explicitly includes these.

A fundamental hardware limitation prevents testing of this system at a 5MHz sampling rate: MATLAB receives
complex doubles, so a 5MHz sampling rate would correspond to bare data transmission rates of 640MB/sec, just
below the theoretical upper limit of Gigabit ethernet. This causes a buffer underflow to occur at the transmitter,
since the AFE was trying to ’grab’ samples before MATLAB could supply them. Therefore, for the demonstration
and the Results section, the default 520.841kHz sampling rate was employed.

6.3 Determining Start of Transmission

In this deskign phase, the transmitter side is set to continue repeating its data for 100secs, and the receiver model is
executed sometime within that. As a first step to present this report, this can determine whether the synchronisation
algorithm in particular is functional. It is understood that this doesn’t mimic the final implementation, but is an

important stepping stone.

A future Capstone group may implement a more realistic scheme will be implemented: summing up the received
power across some time window and comparing this to a threshold energy value. This comparison will determine

whether the transmission has begun or not, and tell the reception hardware whether to begin the reception process.

6.4 Automatic Gain Control

For the preliminary and final reports, Simulink models will drive the AFE. Parameters such as filter tap coefficients
are abstracted away by a filter design wizard, as are the settings for AGC. For testing, AGC Slow Attack was
selected from a MATLAB dialogue. Information this detailed is held within the MATLAB environment, and not
released to the end user. If the gain details need to be verified, GNU Radio can be run to break out all AFE

parameters.

The Simulink model in Figure 50 includes an SDR which outputs complex time domain signals which are fed through
a broken-out AGC block to amplify the samples up to an average power of 250mW over 100 samples. This is output
to a file to be dumped into the DSP simulator’s memory. The QPSK block is there as a testing relic: it performs

timing recovery and hence was used to test the channel by transmitting a character string as the encoder output.

65

v

s
D -

Scope
Unbuffer
wx AGC ¥ | nSdrOut
To Workspace
AGC ke
data '}{x RadicFram ESiZE.’s:I]—b dakin QPSK Receer
SDR Signal Specification I
Receiver ¥

data length

Zyng 5DR Receiver

Figure 50: OFDM Reception Simulink model

6.5 Future Work

This evaluation system was selected with further expansion in mind: the Zedboard donation included software
licenses for Vivado, which can be used in conjunction with MATLAB’s HDL coder to flash HDL code to the Zyng-
7000’s programmable logic. This will enable a future evaluation stage with the Zedboard and DSP communicating
in real time. Since the Zyng-7000 contains a processing system (PS) and programmable logic, C code can be
writen on the device and executed just as C code would be on a Raspberry Pi. Generating the HDL code can
be done by passing MATLAB code through the MATLAB HDL Coder Package, then porting this to Vivado for

hardware-implementation. This will enable the DSP and AFE evaluation boards to communicate in real time.

66

7 RF Antenna Design

7.1 Motivating the Inflatable Antenna

Today, the low-cost of nano-satellite launches are overshadowed by their low bit-rate performance, and therefore
cannot utilise payloads that require higher data rates. Such payloads might include high data-rate telemetry, high

resolution LEO observation satellites, and other complex scientific payloads.

The low power, low mass and low volume nature of nano-satellites prompts industry to be creative with their
data-link to achieve data rates meeting the needs of modern payloads. For the purposes of this proof-of-concept
satellite, the team have elected to develop an inflatable antenna that will meet high SNR requirements to achieve
OFDM modulation through space, without substantially reducing orbital life-time when in lower orbits. At lower
orbits (310-400km), Flight Systems’ orbital models report that orbital drag accounts for a substantial factor in the
satellite life-time [43].

The design initiative was motivated by the development team at Massachusetts Institute of Technology, who are

working towards developing their own inflatable antenna for 2U and 3U satellites [17].

The Capstone team have provided firm system specifications to the payload team, who are at this time verifying
and iterating the proposed topology. The payload team are also engineering the inflation system, where they are

considering the mass of benzoic acid required to achieve appropriate pressurisation at vacuum.

Since work of the Capstone group does not extend to analysis of the inflation process, the results of their work will

not be presented in this section. There will instead be specific detail on the RF design process of the antenna.

7.2 Primary Specifications

Requirement Source Value | Units

Antenna Gain Link Budget 15 dB

Antenna Volume | Volume Budget | 200 cm?
Reliability - 95% -

Table 18: The primary requirements of the antenna design.

In addition to these quantifiable specifications, the antenna should be applicable and flexible to the volume require-
ments of future cube satellite missions and should be a low cost design. Circular polarization can be achieved with

appropriate antennas consisting of orthogonal dipoles or orthogonal patch elements.

67

7.3 Overview of high gain antenna topologies

7.3.1 Frontal feeder parabolic

The frontal feeder geometry is the most reliable parabolic antenna topology with the lowest number of moving
parts. It is the topology currently being developed by MIT [17], consisting of a patch antenna, feed horn, and

primary reflector to collate the EM waves to achieve gain.

Axial or
Front feed
)
%
/ 7
Supports - .
Feed - Parabolic
antenna reflector
Satellite

Figure 51: Illustration of a frontal feed antenna.

Merits of the frontal feeder include its high gain which is proportional to the size of the primary reflector, and
also the expandability of the design. Disadvantages include that during communications the satellite is in the path
of the high frequency radiation, potentially causing interference to the RF equipment in the transceiver or other
precision measurement devices. This impeded path will also result in a reduced transmission power and consequently
reduce the gain of the antenna at the satellite ground-station. A final disadvantage of the frontal feeder is that
the inflatable will block the direct path of sunlight to the satellite’s solar panels during the day-time. When the
satellite is charging, it would require actuation of the magnetorquers to rotate the satellite so panels face the sun
and are able to charge the battery. In other words, the satellite would never be able to harvest power without and

transmit at high-speeds at the same time.

All parabolic inflatable designs require some mechanism to deploy. At the time-being this mechanism is proposed
to be capsule, which doubles as the antenna feedhorn, coupled with a cap that is separated with the addition of
nichrome burn wire. In the frontal feeder design, this cap serves no purpose other than to initiate this inflation

function.

7.3.2 Cassegrain parabolic

A Cassegrain topology differs from the frontal feeder geometry in that it utilises the placement of a secondary

reflector to change the direction of data-travel with respect to the feeder location.

68

Cassegrain
Satellite

Convex

secondary
reflector

Figure 52: Illustration of a Cassegrain antenna.

The Cassegrain geometry solves the problem of satellite power harvesting by placing the antenna in the direction of
data transmission, rather than in the direction of the sun. It also addresses the concern that satellites may perform
badly when subject to high intensity self-interference. Disadvantages include that is inherently less reliable than
the frontal feeder due to the addition of a secondary reflector that is needed to provide gain. Furthermore, the
small-scale geometry of the secondary reflector needs to be appropriately considered when selecting frequencies to

communicate on.

A final advantage which came about with some design ingenuity, is that the Cassegrain design can use the capsule’s

cap as the secondary reflector, effectively doubling the value of volume otherwise used in the frontal feeder topology.

7.3.3 Gregorian parabolic

The Gregorian topology is almost identical to the trade-offs of the Cassegrain design. It only differs in its deploy-
ment of an ellipsoid secondary reflector (concave) as opposed to the hyperbolic secondary reflector (convex) of the
Cassegrain. This arises due to the parabola’s focus point now being located at a lower height than the secondary

reflector. This mere observation results in a larger volume requirement to host a Gregorian type geometry.

7.3.4 Helical and Yagi-Uda Antennas
Helical and Yagi antennas both are relatively large devices, which are commonly used in satellite and long distance

radio communications. They can typically achieve a limited high gain (around 10-12dB) but would require large

internal volume requirements and complicated deployment mechanisms due to their rigid structures.

69

Gregorian
Concave

seconda
reflector

ry

Figure 53: Illustration of a Gregorian antenna.

7.4 Design Methodology

7.4.1 Design Cost Analysis

In order to settle on an appropriate antenna geometry, the team conducted an appropriate cost analysis on various

high gain antenna designs. This design cost function is summarised in Tables 19 through 21.

High gain design | Volume | Gain | Reliability | Cost | Flexibility
Frontal Feeder 10 8 8 10 5
Cassegrain 8 9 7 10 9
Greogorian 6 9 7 10 9
Helical 3 7 10 8 5
Yagi-Uda 2 7 10 8 4

Table 19: The design incentives of each topology for each of the primary requirements.

Volume

Gain

Reliability

Cost

Flexibility

Weightings

0.25

0.25

0.25

0.05

0.2

Table 20: Weightings assigned to each primary design requirement.

Chosen weightings and specifications were decided on among the team members. As observed in Table 21, the

total incentive to persist with Cassegrain antenna design was larger than any other antenna, so it was selected for

preliminary design, simulation and prototyping.

70

High gain design | Volume | Gain | Reliability | Cost | Flexibility | Design Incentive
Frontal Feeder 2.5 2 2 0.5 1 8
Cassegrain 2| 2.25 1.75 0.5 1.8 8.3
Greogorian 1.5 | 2.25 1.75 0.5 1.8 7.8
Helical 0.75 | 1.75 2.5 0.4 1 6.4
Yagi-Uda 05| 1.75 2.5 0.4 0.8 5.95

Table 21: Total design incentive after the design weightings were applied to each of the antennas.

7.4.2 Cassegrain Design

7.4.2.1 Overview

The antenna will consist of a patch, coupled with a feed-horn, hyperbolic secondary reflector, and parabolic primary

reflector. In order to optimise for volume, the team elected to connect the reflective paraboloid with a non-reflective

ellipse rather than a sphere.

Figure 54: CAD model of inflatable antenna [1]

While this complicated the parametric analysis, it resulted in a more compact volume that ultimately translates to

a higher orbital lifetime. The gain [44] of a parabolic antenna can be calculated as:

rd\”
G = 10log;oh (- (35)

Where: G is the gain over an isotropic source in dBi, k is the efficiency of the antenna, assumed to be 50%, d is the

71

diameter of the parabolic aperture in meters and A is the wavelength of the signal in meters. This is the primary
equation used to calculate the diameter of the dish. However, there are more constraints that arise due to the fact

that the antenna will be contained inside a balloon, including:
e The inflated volume must be as low as possible to reduce drag.

e The primary reflector paraboloid must continuously connect to the transparent material, holding the secondary

for good shape retention.
e In the downlink, all RF reflected from the secondary must be also reflected from the primary.
e In the uplink, all RF reflected from the primary must be also reflected from the secondary.
e The secondary must be large enough to sufficiently cover the feed-horn’s beamwidth.
e The secondary must be small enough to reasonably fit into the satellite’s chassis.
e The flaring of the feedhorn must be large enough to create a sufficiently small beamwidth.

e The geometry must be large enough to operate efficiently at the selected communications frequency of 5.65

GHz and 5.83 GHz.

7.4.2.2 Secondary reflector design

In order to satisfy the listed constraints, a MATLAB package was designed to conveniently adjust and trade-off the
system design parameters. The constraints outlined in Equations (38)-(42) are enough to capture a complete para-
metric description of the secondary reflector for a simple ray-tracing model when employing traditional descriptions

for a hyperbola and parabola in 2-dimensions.

Offset Hyperbola

—h \ 2 2
(y 3 fyp) _ ‘;: -1 (36)
Thyp bhyp
Parabola
y = da? (37)

Figure 55 describes a set of variables required to define the various parameters in the above equations.

72

Parabola focus

+ Hyperbola focus
ey

S

\/—\

@ Center of hyperbola

2c

Y

L

offset

-0

epd-horn focus

+ Hyperbola focus

Figure 55: A diagram of the variables used to create a complete parametric analysis of the antenna geometry.

Geometric pairing of hyperbola and parabola [44]

Hyperbola offset: hpyp = ¢ — hoffset
Hyperbola eccentricity: e = ¢
Ahyp
_ fp + hoffset

Hyperbola focal distance: ¢ 5

Hyperbola vertical axis: apyp = h — (¢ — hoffset)

Hyperbola horizontal axis: bny, = \/c? —aj,,

where:
® Norfset is the offset of the focal point of the feedhorn

e fp is the focal point of the parabola.

7.4.2.3 Ellipsoid envelope design

Similarly, the MATLAB package must construct a description of the antenna’s transparent ellipsoid envelope.

Offset ellipse

T 9 Yy — hell 2
(L lelty2 g
el benr)

Condition of secondary reflector attachment

Yhyp = Yell |whyp:TL

where:

73

(44)

e The pair (Tnyp, Yeu) is a valid point on the ellipse.
o The pair (Tayp, Ynyp) relates to highest point of the secondary reflector.
e L is the ratio of the secondary reflector radius to the primary reflector radius.

After some lengthy algebra, condition (44) yields

Qdypl”' (x%.yp - x;%ar) - (y?zyp - y%ar)

fett = Q(d(xf%,yp = 234,) — (Ynyp — Ypar)) 45)
where:
® T, is the radius of the hyperbola.
® Ypnyp is the height of the hyperbola at x = rL = zp,).
® I, is the radius of the parabola.
® Ynqr is the height of the parabola at x = r = x4,
e d is the diameter of the parabolic reflector.
Condition of continuity The ellipsoid envelope must be smoothly connected to the paraboloid reflector.
ety = Do, (46)
This yields:
beiy = \/1 — (Ypar — henn)? = 2d(Ypar — Pet) 12,4, (47)
et = \/ 22, — yWT;he” (48)

7.4.2.4 Verification of analysis via an independent ray tracing routine

To verify the geometry forged by the aforementioned relationships, it is important to compound the MATLAB
script with a display of how rays pass through the antenna. This will serve as verification that the geometry can be
passed onto the payload team for more rigorous RF simulation, and give the flight systems and flight vehicle teams

a very good indication of the final volume requirements of the antenna system.

It should be noted that the routine of Figure 57 will not be used to predict antenna gain, but can be used as a
means to easily identify losses due to parabolic/hyperbolic beam mismatches. When implemented into MATLAB’s
GUI environment, the effectiveness of the equations can be easily verified by inspecting the plot generated inside

the interface. The parameters relevant to the tuning of the design can be entered into the model via the toolbar

74

beneath the plot. See Figure 56. The current input parameters are the ones used to develop our 1% official prototype
geometry.

File N
UMSP Antenna

Design Parameters

Parabolic Curvature, y=d x?: Subreflector Height: Antenna Radius: ~ Ratio of secogdary to primary Feedhorn offset: Number of 3D sections
radius:

d= 14 h= o5 'm r= oz m 0.1688 omt m 10

Update

Figure 56: The MATLAB GUI environment, indicating the tunable design parameters and the generated antenna

geometry.
Generate vertical e
ctors of
ri\"v:: s;r:cicr:gan intersection of the
5 nl .
prart incident on the d rd;;tegr:]v;:'th
parabola. p
hift th back v
b to tT;ﬂ: r:::t c:‘c o ieithe copied Shift a copy of the
i - < rays by twice their | Py or t
freconthe 14 angle of incidence”. | rays to the origin.
parabola. 2 -
h 4
Calculate the -
intersection of the Shift a copy of the Rotate the_ EDDE?
new rays with the P raysto the origin o | rays by twice their
hyperbola " ’ "] angle of incidence
*) to the hyperbala™.

h 4
Shift the copied rays

back to their point
Fi Plot datato screen. [« of incidence onthe
hyperbola.

Figure 57: Routine for geometric verification by ray tracing.

7.4.2.5 Antenna design for 3-dimensional prototyping

Clearly, the methods provided so far are sufficient only to build up a 2-Dimensional illustration of the inflatable
structure, and further effort is required to move this model towards a 3D prototype. Since the structure is not rigid,
we cannot use the power of AutoCad to rotate our parabola by 360 degrees for the purposes of, for instance, 3D

printing. Since we have proposed to construct this antenna from Mylar, we must create a pattern of 2-Dimensional

75

cuts required to achieve this 3D shape, once pieced together. Instead there is a need for a little further creativity
with MATLAB. Since it is complicated to make a curved 3D structure from a single piece of material, the group
has elected to piece N smaller pieces of Mylar together to achieve a sufficient approximation of the paraboloid and
ellipsoid shapes. For the paraboloid this is relatively straight-forward. We can solve a line-integral along the length
of the parabola, as a function of its height in the z-direction.

Description of variable mappin
0.08 T T T P T T T PE 9

007 \ |
0.06 | \ i
0.05 \ |
N 0.04 \ 1
0.03 f
0.02 |

0.01 \

Figure 58: Definition of coordinate systems required to establish 2D cuts.

The mapping to the z plane is described by (50)

o) = [\ (s (19)
c(z) = /0c 1+ @dz (50)

We can also obtain the circumference of a contour at a height, z, via the simple equation:

C(z) = 2mx

O(z) = 2n\/§

where z = dx?. Substituting in the inverse of the solution for ¢(z), z(c), we can theoretically obtain an expression
for C(z(c)) = C(c), required to detail the sections of inflatable material. Finally, we can divide the circumference
of the parabola, C' at some arc length, ¢, by N, the number of sections of our paraboloid. However, since the

equivalent expression of (50) for the ellipse:

c(z) :/0C

1+ 22a2

»2(b? — 22)

(51)

is unsolvable, we have elected to use MATLAB to compute the numeric integral. The methods employed by the

MATLAB script to calculate the ellipsoid cuts are outlined in Figure 59, and is identical to the method employed

to calculate the paraboloid cuts.

Get properties of
the ellipsoid from
the Inflatable ellipse
design section.

Cut out and connect
together the N
piecesto create the
30 surface of the
ellipsoid.

—————————

Create a mapping
(via @ numeric line
integral) of z-axis
height to the length
[c-axis) of the 2D
shape that folds to
the 30 ellipse.

Plot to scale the

| eeometry of the N
cuts desired for a

particular accuracy.

Use this mapping to
create the width of
the ellipsoid as a
function of the c-
axis wic).

i

Divide this wic)
function by the

| number of material
sections, M,
required to

fabricate the shape.

Figure 59: The MATLAB routine employed to generate the 3D cuts.

When outputted to a plot in MATLAB, the 3D geometry could be realised through welding sections of cuts detailed

in Figure 60.

N=10 Zggcuts required to make a paraboloid of radius r=2.37e-01 and curvature d :

0.25

\
/

o\ /

/

/

006 -004 -0.02 0 0.02 0.04 0.08 0.08

(a)

Ogesof N=10 2D cuts to produce an ellipsoid with a=b=2.53e-01, c=6.18e-02

\
AN
0.25f
\1
0.2 N\
\
£015[AN
AN
N
N\
01f
\
\
\\
0.05 | \
\
/
0
008 006 004 002 0 002 004 006 008
m
(b)

Figure 60: One of N cuts required to achieve both the paraboloid geometry (left) and ellipsoid geometry (right).

Figure 61: The first inflatable antenna prototype of geometry.

7.4.2.6 Assembly

Due to the novel design of the proposed antenna, the cuts require manual assembly. Many efforts were conducted
to obtain consistent welds using a PCB etcher located in the Electrical and Electronics Engineering building at
Melbourne University. The etcher looked capable of welding two pieces of Mylar together, since the power was
finely adjustable either side of the Mylar’s melting point. Difficulties with consistency persisted, resulting in many
inconsistent welds and rendering the process completely infeasible for assembly. Other group members have since
tested other methods of combination by heat application and it was discovered that the selected Mylar was in fact

not heat sealable.

Newer samples ordered by the group had a much better response to thermal clamping, warranting further investiga-
tion with the EEE departments PCB etcher. Alternative and/or additional sealing methods explored by the team

include use of an Araldite epoxy adhesive, which currently is being used to seal the current inflatable prototype.

78

7.4.2.7 Trade-offs in RF design

As alluded to earlier, there are many trade-offs involving volume, carrier frequency, gain and bandwidth to ensure
an optimal antenna design. The team has elected carrier frequencies of 5.65GHz and 5.83GHz'® to meet these
requirements, since Cassegrain antenna efficiency increases with wavelength. The 5.65GHz and 5.83GHz bands are

the highest frequencies we can achieve without exceeding the 6GHz limit of our AFE’.

Higher frequencies also result in a higher gain from the RF-emitting feedhorn. This higher gain results in a
narrower beamwidth, ultimately projecting more signal into the effective area of the secondary reflector. Currently,
simulation results provided by other team members indicate the biggest limit in the antenna simulation is the
feedhorn properties, which currently assumes a conical form-factor and emits at a half power beamwidth of 52°.
To be optimal, the beamwidth needs to be 23° to match the sub-reflector geometries. This can be achieved by
increasing the flare angle of the conical waveguide, but it cannot exceed the allowable 200 cm? volume provided by

Flight Vehicle for the inflatable antenna payload.

Figure 62: Parabolic reflector power densities at 5.65GHz

Finally, increasing the gain of the antenna too much will reduce the beamwidth sufficiently enough that the Flight
Systems (attitude control) team can no longer point with any accuracy, rendering the system completely non-viable.
Currently, Flight Systems are working to the pointing requirements of +5 degrees, meaning the antenna can have

a beamwidth no smaller than 10 degrees.

7.5 Results

Currently the antenna gain has been simulated to produce 13 dBi of gain. This was calculated by using an RF
simulation of the conical feedhorn [45] by performing a surface integral in MATLAB over the data points that reside
inside the effective secondary reflector’s beamwidth?’. Each data point contains the power intensity at a given angle

(0,0), and thus requires a surface integral over the solid angle to obtain an effective input power. It is clear that

18See Section 8.
198ee Section 6.
208ee Section 7.4.2.5

79

the majority of losses occur a result of the feedhorn/secondary reflector beamwidth mismatch described in Section

7.4.2.7.

7.6 Future Work

Due to time restrictions and the need to invest dedicated development time into the satellite’s data-pass, RF
simulations and further design iterations on the inflatable have been passed to a dedicated payload team for further
analysis. In order to achieve the extra 2dB of gain in the inflatable antenna, a number of methods can be explored

further.

e A secondary IF mixer could be employed after the AFE to mix the carrier to a band of 24-24.05 GHz; the next
closest amateur-satellite band. This would dramatically increase the efficiency of the inflatable, and would
mean a lower volume antenna design could be achieved to produce the same antenna gain and beam-width.
The primary concern of this method is the added power consumption of a secondary mixer to the system, and

hence would be a simple trade-off against the additional link gain provided.

e The secondary reflector could be brought closer towards the feedhorn, and even slightly extended in radius to

cover more surface area, reducing beamwidth mismatch.

e In the unlikely event that the above two works do not present solutions, the frontal feeder geometry could be
reconsidered, since it performed only slightly worse than the Cassegrain in the initial cost analysis, and there

is no secondary reflector that causes the SNR reduction.

80

8 Spectrum Allocation

8.1 Overview

Radio spectrum, known by many as the ’invisible resource’, and its associated procedures is a source of major
cost and procedural latency for the satellite design team. If left unaddressed until late in the design, this has the

potential to create enormous hurdles that cannot be overcome unless the system is completely redesigned.

Applications for wireless networks are ultimately processed by the International Telecommunications Union (ITU),
who administer strict policies on obtaining this spectrum through their Radio Regulations (ITU-RR) Volumes I-IV
[46]. The policies most relevant to MSP’s launch extend from requirements on power spectral density (PSD) to

transmission and reception power intensity and are outlined in Article 21 [46].

The services of the ITU are administered by a relevant domestic organization. In the case of the MSP launch,
preliminary arrangements have been sought by the Capstone team through the Australian Communications and
Media Authority (ACMA). In addition to the expected processing time of 9 months required by the ITU, the ACMA

demand an additional month to formalise an application and present it to the ITU.

8.2 Service classification

ITU-RR Vol. 1 [46] outlines many definitions of system types that must be addressed to determine an appropriate
bandwidth assignment. Of those available, MSP’s mission can be classified as either a 'Fixed-satellite’ or ’Amateur-
satellite’ primary or secondary service. If allocated as a primary service on a particular band, MSP may police
secondary services on the same band to silence other transmissions in the event of harmful interference. This right

cannot be exercised when operating as a secondary service.

8.3 Summary of the table of frequency allocations

Researching the ITU-RR volumes in addition to email exchanges with ACMA - Melbourne, ACMA - Canberra, and
our experienced industry advisor, Mr Les Davey, has led to the following summary of frequency allocations given

in Table 22.

Problems with acquiring spectrum, as outlined in the summary table, are largely attributed to two different cases:

coordination and the presence of applications.

81

Bandwidth (MHz) Classification Link Type | Notes

2500-2520 Fixed-satellite | Space to earth | Spectrum Embargo 26

2520-2535 Fixed-satellite | Space to earth | Broadcasting satellite present - ACMA sug-
gest difficulties licensing

2655-2670 Fixed-satellite | Earth-to-space | Requires coordination

2670-2690 Fixed-satellite Both | Requires coordination

3400-3500 Fixed-satellite | Space-to-earth | C-band commercial operations

3500-3600 Fixed-satellite | Space-to-earth | C-band commercial operations

3600-3700 Fixed-satellite | Space-to-earth | C-band commercial operations

3700-4200 Fixed-satellite | Space-to-earth | C-band commercial operations

4500-4800 Fixed-satellite | Space-to-earth | C-band commercial operations

5150-5250 Fixed-satellite | Earth-to-space | Specific for feeder link to the mobile-satellite
service.

5650-5670 Amateur | Space-to-earth | Available for amateur-satellite

5830-5850 | Amateur-satellite | Earth-to-space | Available

5850-5925 Fixed-satellite | Earth-to-space | Known spectrum embargo - enquired ACMA

5925-6700 Fixed-satellite | Earth-to-space | Available - less commercially occupied

Table 22: Summary of available bandwidths, classifications, link-type, and possible application complications.

8.3.1 Coordination

Coordination is a measure undertaken by the ITU in the situation that an application for frequency will potentially
conflict with an existing application somewhere else in the world. For satellite operations, these conflicts will largely
occur over C-band frequencies where telcos and other commercial companies have deployed their own systems. In
the event coordination is required, the conflicting party (whomever has applied to the ITU at a later time) is
required to pay administration costs to both the ITU administration and the conflicted party until the issue is
resolved. This has been quoted to be of the order of thousands of dollars per month by ACMA, and typically
is resolved for no less than $30,000. Obviously, given the low-cost nature of this CubeSat design, coordination is

completely unfeasible for MSP.

8.3.2 Embargoes

ACMA define a spectrum embargo as ’an administrative tool to facilitate orderly spectrum planning’ [47]. As such,
if applying for an embargo it is essential that the application is able to outline that the purpose of the network is
aligned with the rationale of the planned spectrum embargo. This process, however, has been advised against by

ACMA since it adds further procedural complexity when an alternative frequency could be more easily acquired.

82

8.3.3 Selection of frequencies

In light of the above information, and the positive responses from ACMA, Melbourne and Mr Les Davey, an up-link
and down-link frequency of 5650-5655 MHz and 5830-5835 MHz is to be currently being sought by the Capstone
team and MSP.

8.4 Amateur radio compliance

The decision to pursue an amateur radio license is a conflicting one. While it is the only choice for a relatively
inexpensive license, the radio design employed by the Capstone team must be made open-source and cannot be

used to generate profit for MSP or is stake-holders.

This has ongoing implications for the satellite after launch. A requirement of amateur radio is that the link is made
available to all HAM radio operators world-wide. This means that data transmitted to and from the satellite must
remain unencrypted and available to any interested licensed party. In order for this to occur, all modules of the

data pass in Section 5 must be published globally.

83

9 Project Management and Satellite Integration

This project is being conducted in conjunction with other Capstone groups, under the guidance of the Melbourne
Space Program (MSP), which has the stated goal of launching a satellite at the end of 2017. Multiple teams are
working to develop their own individual systems which must fit together, and there are students in the telecom-
munications team who are not part of the Capstone group. That means that some work crucial to designing the
telecommunication system wasn’t performed by ELEN90070 students, and their contributions are referenced appro-
priately. Because of this, significant effort must be expended by group members in co-ordination with other teams

and students.

9.1 Team Responsibilities

The telecommunications team is made up of undergraduate electrical and chemical engineering students and Master
of Electrical Engineering students, in addition to the Capstone members. These other members have been entrusted
with important design tasks, such as determining the transmission windows, determining the required amount of
benzoic acid required to keep the inflatable antenna at an appropriate pressure for the period of the mission,
verifying literature reviews for antenna calculations and researching methods to seal the inflated balloon to prevent
outgassing. While the results of their work cannot be considered part of this report, time was required to determine

the tasks to assign to these members and confirm the correctness of their work.

In addition, team members will move on as their courses complete, so a handover process has been put in place
to ensure that when senior members leave the program, junior members are ready to seamlessly continue progress.
That has been a driving goal of the Capstone, to generate enough documentation that subsequent teams don’t have

to reinvent the wheel.

9.2 Inter-team communication

For the satellite to function, each subsystem must be able to communicate with other subsystems: the Power team
must supply the correct voltage rails to the Communications team; the Communications board must respond to
commands from the Operating System, and the communications board must fit within the envelope determined by
the Flight Vehicle team. As a more tactile example, the connection pins between the boards must line up. This
requires constant communication with other teams, otherwise the communications system exists in a vacuum as a

standalone education example.

A few examples of this are: presenting the telecommunications system progress at a number of design reviews,
answering questions about power requirements and requesting physical space within the satellite. There are weekly

and ad-hoc meetings to talk about how the different subsystems need to work together.

84

10 Testing and Results

10.1 Simulation

In both the 625kHz and 5MHz bandwidth profiles, the BER for a 9dB bit SNR is approximately 3.1 x 10~ after a
6dB SNR margin is reserved for non-ideal sychronization, quantization, RF model and ect. These results agree with
the analysis in link budget. Furthermore, peak-to-average power ratio terms of 12dB were occasionally observed,

validating the analysis in Section 2.2.2.

10.2 Hardware Verification

Once the system was fully functional, 18 test runs were conducted in the DnB lab following the process described
in Figure 11 on page 19. Since this is not an RF shielded environment, the receiving antenna often picked up noise
with a strong central peak centred around 2.4GHz. This was initial thought to be from WiFi routers, however this
protocol transmits over a 20MHz spectrum. The magnitude of this noise was time variant, and resulting in different

reception spectra as seen in Figures 63 and 64.

Received OFDM Signal Spectrum
2.5 T T T T T

1.5F -

Linear amplitude

D 1 'l 1
-300 =200 -100 0 100 200 300

Baseband frequency [kHz]

Figure 63: Received Spectrum with significant interference

For the ease of use, the DSP process was simulated on the VDSP+- platform. A test message was generated on a

85

Received OFDM Signal Spectrum

1.8} -

=
(=2}

=
B

=
M3

<
fa
T

Linear amplitude

=
)}

<
B

0.2F

D L 1 i ' 1
-300 =200 -100 0 100 200 300

Baseband frequency [kHz]

Figure 64: Received Spectrum without interference

laptop, which was then interleaved and encoded. This was dumped from the DSP’s memory to a .dat file. This was
mapped on the DSP simulator, and these complex time domain samples were transferred to a MATLAB environment
to be transmitted via the SDR. A receiver script collected complex time domain samples, and ran MATLAB code
to perform synchronisation and automatic gain control (AGC). These complex time domain samples were passed

back to the VDSP++ environment where they were decoded, and a binary string was generated.

All the binary files generated during every trial of this process were transferred to a MATLAB environment which
extracted the binary strings to print the received character strings, and determine input and output bit error rates

(BER). Figure 65 was achieved via executing this script, shown in Listing 24 in Section C.2.

Determining the effect of the interference is more complicated than just assuming that the demapper will get its
estimation of the affected tone wrong 50% of the time. A strong interference peak will increase the power of the
received signal, so the intended tones peaks won’t be magnified as much. Reducing the power of each tone as it
passes into the demapper increases the probability of incorrect demapping, and hence increases the channel BER.
Modelling this effect in a MATLAB simulation is difficult: so the simulated curve in Figure 65 just inverts particular
bits in the string depending on whether a uniformly distributed pseudo-random number is less than a desired bit

error rate.

As expected, when the decoder BER was low, the Viterbi decoder was able to correct for nearly all errors. However,

86

BER plot

0.6 ¢ o
0 Experimental
Simulated o
0.5¢ o MEBIRE
T
ot
|'K-.
0.4} s
o

o f
L I_I
&0
@ 03F f
m
(] {

0.2F III

/
Illu
0.1F Iﬂ-'I
|IhI
F!H-;
0 e e ! -
1073 1072 107" 10°
Channel BER

Figure 65: Experimental and Simulated BER curves

at higher input BERs, the bursty output nature of the Viterbi decoder came to the fore: once the errors came close
enough to each other the decoder output became nonsense. A BER of 0.5 is the worst possible output, since there is
no preference for the bits being correct or incorrect. A 'knee’ was found where the input BER equalled the output

BER, for the k = 4 decoder this lay at an input BER of =2%. Beyond this, the output deteriorated.

Trials were conducted with the transmitter and receiver antennas spatially separated by distances of 100mm to 3m
in order to give different channel BERs. Given the small bit length of each transmitted frame (11 hexadecimal
symbols), it is not surprising that trials superimpose upon one another. It would have been desirable to get
some channel error rates between 0.03 and 0.1 to lie along in the transition region, however this proved difficult:
interference was either too low and most channel errors were corrected, or the magnitude of the peak was too high,
causing the desired spectrum to be attenuated, in addition to a central tone being knocked out, resulting in a data

BER of around 0.5.

As can be seen, the experimental results loosely match with the simulated. Running each experimental trial took
a significant amount of time, and time constraints prevented more tests from being run to average out outliers in
the data. Of particular note is the fact that frames with channel BERs up to 0.0246 were decoded without error,
whereas the simulation predicted error rates of 2%. This can be ascribed to chance: the transmitted frames only
held 11 hexadecimal symbols totalling 264 bits, meaning that experimental channel bit error rates between zero

and 0.00378 were not achievable. The simulator tested 1000 frames per error rate, and so the occasional bursty

87

error output would drag the simulated data BER up. In single frame tests, whether the bursty output case is seen

is deterministic. With that in mind, it can be concluded that the constructed system operates as expected.

Section 5.2.4 describes the effect of including a hard decision decoder on the SNR. As seen in Figure 28 on page 41,
a coding gain of approximately 5dB is attained, significantly larger than the conservative margin used to generate

the link budget. The coding gain can be found by taking the horizontal distance between the SNR curves.

88

11 Conclusion

As a sub-team in with the MSP, we were required to design a flexible, adaptable and accessible communication system
for the satellite. We successfully navigated major steps in communication system design including a feasibility study,
requirement collection, power and link budget evaluation, specification, prototype simulation, hardware selection,

high level architecture design, low level module design, verification, system integration and testing.

OFDM is an important modulation scheme in contemporary communication systems and it is widely adopted by
4G, WiFi and DVB standards. In order to deliver a flexible and standardized system, we decided to partially
follow the IEEE 802.11a standard rather than create a new communication protocol. The benefits derived from this
decision abound: the communication protocol has been solidified by world leading organizations and companies;
enormous research in this area which could potentially help us to overcome unpredictable issue has already been
conducted; very rich MATLAB resources are available in the prototype and verification stage; there are a range of

hardware choices to implement the OFDM system and many of them have been optimized in this implementation.

Some of the hardest tasks have included: understanding the depths of the IEEE and ITU standards. The devil lay
in the detail, and even small sections could cause our base-band processor to produce nonsensical output. This was
also true with the MATLAB implementation of the AFE driving circuit. Also of great difficulty was optimising
C code within the DSP environment, and ensuring correct data flow occurred between blocks. A particularly
challenging aspect of this project has been deciding where to spend our time. Such a broad Capstone scope allowed
us to devote time where the greatest improvements could be made. This freedom has allowed us to learn more
by weighing up the trade-offs of a particular choice to a greater extent than other Capstone projects, which more
closely adhered to a tight specifications set. This has been more satisfying, and more closely mimics commercial

practise.

The analysis conducted to date indicates the feasibility of the system in meeting the program specification. Further

work needs to be done by further FYP groups or MSP team members in the following areas:

Select high power amplifier

Investigate selection of a microwave transmission band

Set up the online evaluation stage

Design dipoles and the patch antenna to sit inside the parabolic reflector

Include buffers to store data dumps from the OS team

Implement Reed-Solomon encoding if the cycle budget is amenable

89

e Design and construct prototype PCB'’s for the telecommunications system

e Design the hardware to drive the ground station transmission, potentially based off the evaluation platforms

used for this Capstone. This should interface with the RF dish orientation Capstone project from 2015 [1]

In general, we feel that this project has been a terrific learning experience, and look forward to continual work with

MSP in fulfilling the system design.

90

References

(1]

2]

19]

[10]

[11]

[12]

[13]

[14]

[15]

R. Mearns, “MSP CubeSat with Parabolic Antenna.” May 2016.

“Phy basics: How ofdm subcarriers work.” http://www.revolutionwifi.net /revolutionwifi/2015/3 /how-ofdm-

subcarriers-work. Accessed: 17-5-2016.

M. C. P. Paredes and M. Garcia, “The problem of peak-to-average power ratio in ofdm systems,” arXiv preprint

arXiv:1508.08271, 2015.

S. Hermelin, “Radio wave propagation over the earth.” http://www.slideshare.net/solohermelin/4-radio-wave-

propagation-over-the-earth, 2010. Accessed: 15-5-2016.
Analog Devices, AD9364 RF Agile Transceiver, Rev. C, 2014.
Analog Devices, ADSP-TS201S TigerSHARC® Processor Programming Reference, Rev. 1.1, 2005.

IEEE Standard Association, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, 2012.

“A mind forever programming.” http://amindforeverprogramming.blogspot.com.au,/2013/07 /random-floats-in-

glsl-330.html. Accessed: 16-5-2016.

B. Lerner, “Writing efficient floating-point ffts for adsp-ts201 tigersharc processor,” 2004-05-06]. hitp://www.
analog, com/dsp, 2004.

“Communication - ofdm.” http://www.sharetechnote.com/html/Communication OFDM.html. Accessed: 16-

5-2016.

“Communication - ofdm.” http://www.sharetechnote.com/html/Communication OFDM.html. Accessed: 16-

5-2016.

“AD9361 evaluation board image.” https://www.arrow.com/en/research-and-events/articles/the-ad9361-sdr-

for-today-and-tomorrow. Accessed: 16-5-2016.
“Zedboard image.” http://www.nutaq.com/blog/zeptosdr-architecture-and-api. Accessed: 16-5-2016.

“Zyng-7000 system architecture.” https://commons.wikimedia.org/wiki/File:Xilinx Zyng-7000 AP _SoC.jpg.
Accessed: 16-5-2016.

M. Garg et al., “Cubesat final report,” 2003. Accessed: 18-5-2016.

91

[16]

[17]

(18]

19]
120]
[21]
[22]

23]

24]
[25]
[26]

27]

(28]
29]

(30]

P. B. Henderson, High Data Rate Radio Transmitter for Cube Satellites. PhD thesis, Citeseer, 2009.

A. Babuscia, M. Van de Loo, Q. J. Wei, S. Pan, S. Mohan, and S. Seager, “Inflatable antenna for cubesat:
fabrication, deployment and results of experimental tests,” in Aerospace Conference, 201 IEEE, pp. 1-12,
IEEE, 2014.

“Nasa nodes.” http://www.nasa.gov/feature/nasa-small-satellite-duo-deploys-from-space-station-into-earth-

orbit. Accessed:14-6-2016.

“Gomspace ax100 module.” http://gomspace.com/index.php?p=products-ax100. Accessed:14-6-2016.
Analog Devices, Estimating Power for ADSP-TS5201S TigerSHARC Processors, 2006.

MWT Microwave Technolofy, MMA-445933H-02 2W High Efficiency Linear Power Amplifier, 2012.
TriQuint Semiconductor, TGA2706-SM 2 Watt C-Band Packaged Power Amplifier, Rev. G, 2015.

A. Singh and H. Kaur, “Non linearity analysis of high power amplifier in ofdm system,” International Journal

of Computer Applications, vol. 37, no. 2, pp. 37-41, 2012.

L. Davey, “Conversations with Les Davey.” 2016.

D. Roddy, Satellite Communications, ch. The Space Link. McGraw-Hill, 2006.

C. J. R. Capela et al., “Protocol of communications for vorsat satellite,” Apr 2012.

P. L. Rice, A. G. Longley, K. Norton, and A. Barsis, “Transmission loss predictions for tropospheric communi-

cation circuits, volume 1,” tech. rep., DTIC Document, 1967.
S. Cakaj, “Antenna noise temperature for low earth orbiting satellite ground stations at L. and S band,” 2011.
M. I. Abdullah, “Comparative study of papr reduction techniques in ofdm,” 2011.

A. J. Coulson, “Bit error rate performance of bpsk modulated ofdm synchronized using a pilot symbol,” in
Personal, Indoor and Mobile Radio Communications, 2001 12th IEEFE International Symposium on, vol. 2,
pp. F-86, IEEE, 2001.

[31] “X-band transmitter can transmit up to 13.3 gb per pass with a 5 m station, designed for cubesat and

32]

nanosatellites (leo).” http://www.syrlinks.com/en/products/cubesats/hdr-x-band-transmitter.html. Accessed:

17-5-2016.

B. team, “Cubesat design overview report,” Accessed: 18-5-2016.

92

[33] P. Y. Cheung, G. A. Constantinides, and J. T. de Sousa, Field-Programmable Logic and Applications: 13th
International Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003, Proceedings, vol. 2778. Springer
Science & Business Media, 2003.

[34] A. Devices, “Adsp-ts201s tigersharc embedded processor datasheet,” 2006.
[35] Analog Devices, C/C++ Compiler and Library Manual for TigerSHARC®) Processors, Rev. 4.1, 2008.

[36] Y. Porat and A. Reichman, “Burst error characteristics of viterbi decoding of convolutional codes,” in Electrical

and FElectronics Engineers in Israel, 1991. Proceedings., 17th Convention of, pp. 230-233, IEEE, 1991.
[37] R. G. Lyons, Understanding digital signal processing. Pearson Education, 2010.
[38] S. R. Mittal and V. Mittal, “A cyclic prefix ofdm system with bpsk,” 2012.

[39] A. Fort and W. Eberle, “Synchronization and agc proposal for ieee 802.11 a burst ofdm systems,” in Global
Telecommumnications Conference, 2003. GLOBECOM’03. IEEE, vol. 3, pp. 1335-1338, IEEE, 2003.

[40] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for ofdm,” Communications,

IEEFE Transactions on, vol. 45, no. 12, pp. 1613-1621, 1997.

[41] M.-H. Hsieh and C.-H. Wei, “Channel estimation for ofdm systems based on comb-type pilot arrangement in
frequency selective fading channels,” Consumer Electronics, IEEE Transactions on, vol. 44, no. 1, pp. 217-225,

1998.
[42] 1. Analog Devices, “Adsp-ts201 tigersharc® processor hardware reference,” 2004.
[43] A. A. Saad, “Orbital drag calculations for 400km orbit with inflatable antenna.” 2016.
[44] T. A. Milligan, Modern antenna design. John Wiley & Sons, 2005.
[45] H. Mulyono, “RF Simulations.” May 2016.

[46] “Radio regulations articles.” http://www.itu.int/en/history /Pages/RadioRegulationsA.aspx?reg=41be=S0202000024,
2012. Accessed: 17-05-2016.

[47] “Spectrum embargoes.” http://www.acma.gov.au/Industry/Spectrum/Spectrum-planning /Current-APs-info-

and-resources/spectrum-embargoes-spectrum-planning-acma. Accessed: 17-5-2016.

93

A Supplementary Figures

Application

v

Presentation

Data Link

A
A

Physical

Figure 66: The OSI model for abstracting telecommunication systems. The green layers will be implemented on

the CubeSat, but the orange layers are not required.

94

Application

'

Presentation

Data Link

F Y
Y

Physical

«——3{20]q] JBARD|IDU|—3

ViteFoi
minimum
latency
\ \ Y
Encoder Interleaver Deinterleaver

Y

Decoder

———320|q IO UA—>

<« AJUa)e| WINWIXEW IIaA——»

Block input

Block output

Meaningless block

Figure 67: A latency description of the software data-pass.

95

B DSP Code

1 /%

The transmitter function includes

3%/

5 /%
CHANNEL MODEL will be inserted between the TX and RX. The current channel model is a combination
of AWGN

7and multi—path noise.

*/

/%
11 The receiver functions include two seperate modes — Synchronization and Data pass — for which we
have
a maximum of 8000 clock cycles to use for each pass.
13

— Synchronisation (using the Frame preamble).

15 — Receive from the LVDS interface (currently a dummy function, and instead is received from
file)
— Frame boundary detection (time domain), currently performed in MATLAB.

17 — Frequency offset equalisation (frequency domain), currently performed in MATLAB
— FFT

19 — Frequency equalisation (frequency domain)

— Phase and gain estimation, performed in MATLAB.
21 — Phase compensation, performed by the DSP.
— Data pass (using the Frame payload)

23 — Receive from the LVDS interface (currently a dummy function, and instead is received from
file)
— FFT

25 — Frequency equalisation

— Stage 1 gain compensation and phase compensation using preamble estimates.
27 — Gain and phase estimation using linear interpolation on the pilot subcarriers, performed
in MATLAB.
— Stage 2 gain and phase compensation using the pilot subcarrier estimates.
29 — Demapping
— Deinterleaving
31 — Viterbi decoding
— Giving the output to the OS.
33 %/
/] ko sk sk skoskokskokoksokokkokokoRskokok ok TILCLUA @8 sk s sk st skt ok skt sk sk ok sk ok ok sk koK S KoK KoK KoK KoK Kk
ss#include <stdio.h>
#include <sysreg.h>
s7#include <builtins.h>
#include "FFTDef.h"

so#include "mapper.h"

96

#include "convolutional.h"
11#include "testbench.h"

#include "memory.h"
13#finclude "interleaver mnew.h"

#include "cyclic prefix.h"
ss#include "lvds.h"

#include "freqEqualisation.h"

17#include "input.h"

49
] xR R R D @TTTIES sk sk ok ok sk ok ok ok kKK KKK KKK R R R KKK K K K
si#define LATENCY (2+INTV WORDS{CONV_SIZE)
#define TOT DATA PASS (LATENCY + TOT SYMBOL NUM)
ss##define TOT NUM PASSES (TOT DATA PASSx4/3) // Includes preamble addition.

55 /[sk ko ko skokoskokokokokkokskokokokokokkokkok FOXT@TTIS s sk s skt sk sk sk sk ok sk ok sk ok sk ok sk ok ke ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok
extern IFFT32(float (*)][], float (*)[], float (x)[], float (x)[], int, int);
s7extern FFT32(float (x)][], float (x)[], float (x)[], float (x)][], int, int);

50 /[Hskkoksokoxsokokokokokskokorkokokkokokokok Global Variables sk sk sk s sk sk skok ok skokok sk ko ok ok ok
extern init ();
61
#pragma align 4
63 section ("datalab")
float ifft output|[outbuff size];
65
#pragma align 4
s7section ("datalab")
float ifft _output_cp [NUM_CP];
69
#pragma align 4
71 section ("datalab")
float fft input [NUM _CP];
73
#pragma align 4
75 section ("datalab")

float fft output|[outbuff size];

~
~

float input[2xN] = {
79 #include "inputs/ifft inputl128.dat"
b
81
unsigned int demap output[2];
83
#pragma align 4
s5 float map out [MAP_SIZEOUT];

s7#pragma align 4

97

section ("data2ab")

so float ping pong bufferl|[outbuff size];

o1#pragma align 4
section ("data3ab")

o3 float ping pong buffer2[outbuff size];

95
volatile int
97 tmp_i0,
tmp il;
99
section ("datalOa")
101 unsigned int INPUT|[TOT SYMBOL NUM]|=
#include "4800words24bit.txt"

section ("datalOa")

10s unsigned long int OUTPUT|TOT SYMBOL NUM];

107 /3 sk sk sk ok sk ok sk ok ko ok ok ok ok K sk kKR KRR OROR R SRR KR TILATTL 3k sk sk ok ok 3k ok sk ok ok 3 sk ok ok ok ok 3 ok sk ok ok K ok sk ok ok K K ok sk ok ok KK Sk oK Kk Kk ok ok
void main(void){
109
float *RECEIVED;
111 unsigned int conv_input;

unsigned long long int enc output, intv_ output, deintv_ output;

float RECEIVED SYM[IFFT OUTPUT SIZE + NUM CP];

115 float TRANSMITTED SYM[IFFT OUTPUT SIZE + NUM CPJ;
float recLongPreamblel [SAMPLE SIZE];

117 float recLongPreamble2 [SAMPLE SIZE];
//float gains [PAYLOAD SYMBOLS]|[2BITS IN SYMBOL| =

119 //#include "feqGains.dat"

121 float eqData[2*BITS_IN_SYMBOL];
//float feqInput [TOT SYMBOL NUM][SAMPLE SIZE| —

123 //#include "feqlnput.dat"

125 unsigned long long int demap output;
unsigned int vit_ output;

127 unsigned long long int burst;
float BER;

120 int i,j;

int data_numrx = 0, tXdata num = 0;

convolutionallnit () ;
133 //printf ("{");
i = 0;
135 while (i <(TOT_NUM_ PASSES)){

98

printf ("SYMBOL %d\n", i);
a7 // TRANSMITTER CODE

switch (i%SYMBOLS IN FRAME) {
139 case 0:

// Short preamble part 1

141 preamble transmit (TRANSMITTED SYM,O0) ;
break ;
143 case 1:

// Short preamble part 2

145 preamble transmit (TRANSMITTED SYM,1) ;
break ;
147 case 2:

//

1/

Long preamable part 1

149 preamble transmit (TRANSMITTED SYM,2) ;
break ;
151 case 3:

// Long preamble part 2

153 preamble transmit (TRANSMITTED SYM,3) ;
break;
155 default :

//printf("%d\n",i);

157 // Read from memory

tmp_i0 = _ builtin_sysreg_read(__ CCNTIO); // read initial cycle count
159 conv_input = memRead (INPUT) ;

tmp il = builtin_sysreg read(_ CCNIO); // read initial cycle count
161 printf("memRead count: %d\n",tmp il—tmp i0);

//printf("%d: Input = 0x%06x\n",i,conv input);

163
tmp_i0 = _ _builtin_sysreg_read(__CCNIO); // read initial cycle count
165 enc_output = convEncoder (conv_input);
tmp il = builtin_sysreg read(_ CCNTIO); // read initial cycle count
167 printf("convEncoder count: %d\n",tmp il—tmp i0);
//printf ("Enc output = 0x%0121lx\n",enc output);
169
// Interleaver — internal buffers.
171 tmp i0 = _ builtin _sysreg read(__CCNIO);
intv_output = interleaver (enc_output);
173 tmp il = builtin_sysreg read(_ CCNIO); // read initial cycle count
printf("interleaver count: %d\n",tmp il—tmp i0);
175 //printf("interleaver output: 0x%0121lx\n",intv_ output);
177 tmp_i0 = _ _builtin_sysreg_read(__CCNIO); // read initial cycle count
mapper (intv_output, map out);
179 tmp il = builtin_sysreg read(__ CCNIO); // read initial cycle count
printf("mapper count: %d\n",tmp il—tmp i0);
181
// OFDM IFFT
183 tmp_i0 = _ _builtin_sysreg_read(__CCNIO); // read initial cycle count

99

185

191

193

197

199

03

R09

1V
o

™
=
~

219

IFFT32(&(map out), &(ping pong bufferl), &(ping pong buffer2), &(ifft output), N, COMPLEX)
; // empty the first 16 complex number for CP

tmp il = _ builtin _sysreg read(__ CCNIO); // read initial cycle count

printf ("FFT count: %d\n" ,tmp il—tmp i0);

// Insert the cyclic prefix

tmp i0 = _ builtin_sysreg read(__ CCNIO); // read initial cycle count
cp_insert ((ifft output), (ifft output cp));

tmp i1 = _ builtin_sysreg read(__ CCNIO); // read initial cycle count

printf ("CP insert count: %d\n",tmp il—tmp i0);

// Transmit the data
data transmit (ifft output cp,ifft output ,TRANSMITTED SYM) ;
tXdata_num-+-+;

// Print IFFT to file to be given to AFE set—up
/xfor (j=0; j<SAMPLE SIZE; j+=2){

printf ("RE: %f IM: %f\n", TRANSMITTED SYM]j | ,TRANSMITTED SYM]j+1]);
}

printf("\n");x*/

// RECEIVER CODE
switch (i%YMBOLS IN FRAME) {

case 0:

// Short preamble sequence part 1.

getLVDS (RECEIVED SYM, TRANSMITTED SYM) ;
break ;

case 1:
// Short preamble sequence part 2.
getLVDS (RECEIVED SYM, TRANSMITTED SYM) ;
break ;

case 2:
// Long preamble sequence part 1.
getLVDS (recLongPreamblel , TRANSMITTED SYM) ;
break;

case 3:
// Long preamble sequence part 2.

getLVDS (recLongPreamble2 , TRANSMITTED SYM) ;

break ;
default :
// Payload (data) symbol
getLVDS (RECEIVED SYM, TRANSMITTED SYM) ;

tmp_i0 = _ _builtin_sysreg_read(__CCNIO); // read initial cycle count

/

100

239

™
&

™
=
~

265

cp_remove (TRANSMITTED SYM, fft input);
tmp_il = _ _builtin_sysreg_read(__CCNIO); // read initial cycle count
printf ("CP remove count: %d\n",tmp il—tmp i0);

// OFDM FFT
tmp i0 = _ builtin_sysreg read(__ CCNIO); // read initial cycle count
FFT32(&(fft input), &(ping pong bufferl), &(ping pong buffer2), &(fft output), N, COMPLEX)

tmp_ il = _ builtin_sysreg_read(__ CCNTIO); // read initial cycle count
printf ("IFFT count: %d\n" ,tmp il—tmp i0);

// FEQ
//applyGains (gains [i—PREAMBLE SYMBOLS]| , fft output ,eqData);

//for (j=0; j<SAMPLE_SIZE; j+-2){

// printf("RE: %f IM: %f\n", eqData|j]|,eqDatalj+1]);
//}

,r/,r/]')l"intf(”\\nn) :

// Demapper

tmp 10 = _ builtin _sysreg read(__ CCNIO);

demapper (fft _output ,&demap output);

tmp il = _ builtin_sysreg_read(__ CCNTIO); // read initial cycle count
printf("demapper count: %d\n",tmp il—tmp i0);

//printf ("DEMAP OUTPUT: 0x%0121lx\n",demap output);

// Deinterleaver

tmp_i0 = _ _builtin_sysreg_read(__CCNIO);
deintv_output = deinterleaver (demap output);
tmp il = _ builtin_sysreg_read(__ CCNIO); // read initial cycle count

printf("deinterleaver count: %d\n" ,tmp il—tmp i0);
//printf("deinterleaver output: 0x%0121l1x\n", deintv_ output);

// Viterbi decoder

tmp_i0 = _ _builtin_sysreg_read(__CCNIO);
vit _output = convDecoder (deintv_output);
tmp il = _ builtin_sysreg_read(__ CCNTIO); // read initial cycle count

printf("convDecoder count: %d\n",tmp il—tmp i0);
//printf (" Viterbi output = 0x%06x\n",vit output);

// Write to memory

tmp_i0 = _ _builtin_sysreg_read(__CCNIO);

memWrite (vit _output ,OUTPUT) ;

tmp il = builtin_sysreg read(__ CCNIO); // read initial cycle count
printf("memWrite count: %d\n",tmp il—tmp i0);

data numrx+-+;

//printf("data numrx = %d\n",data numrx) ;

101

}
k7o //printf("i %d\n",i);
—
)
printf("data num = %d\n",tXdata_num);
bss printf("i = %d\n",i);
//printArrayInt (OUTPUT, TOT SYMBOL NUM) ;

//BER = ber calc (INPUT, OUTPUT);
ps7 //printf("BER = %f\n", BER);

Listing 1: dspCode/main.c

#define TOT SYMBOL NUM 4800
»#define NUM FLUSH (TOT SYMBOL NUM/EFF CONV_SIZE)
#define BITS_IN_DOUBLE 64
i#define BITS_IN SYMBOL 48
#define N _SYMBITS 48
s#define BITS IN INT 32
#define BITS_IN_SHORT 16
<#define BITS_IN BYTE 8
#define BIT LEN 1
w#define OFDM_BITS 64
#define NUM CP 32 // each imag and real is float
12#tdefine IFFT OUTPUT SIZE 2x«OFDM_BITS
#define SYMBOLS_IN_FRAME 16
1a#define PREAMBLE SYMBOLS 4
#define PAYLOAD SYMBOLS 12

16#define SAMPLE SIZE (IFFT OUTPUT SIZEHNUM CP) // the size of each ifft out,

16 CP. each time we transmit 160 floats

consisting

of 64 tones

Listing 2: dspCode/input.h

// Included libraries
o#include "defts201.h"
#include "builtins.h"

A

// Definitions

s##define PRINT LINE LEN 20
//#define CONV_SIZE 32
s#define CONV_SIZE 12

#define EFF CONV_SIZE (CONV_SIZE—1) // Don’t count the inserted flush bits.

l#define BITS_IN_INPUT 24
#define OUTPUT SIZE (RATE«BITS_ IN_ INPUT)
1»#define TOT_INPUT_BITS (CONV_SIZE+BITS IN INPUT)

102

#define RATE 2
11ffdefine TOT_ OUTPUT BITS (RATE+«TOT_ INPUT BITS)
#define TRANS LEN 138
16#define SEED 34642
#define BITS IN DOUBLE 64
1s#define BITS IN INT 32
#define BITS IN SHORT 16
20#tdefine BITS IN BYTE 8
#define BIT LEN 1
227fdefine NUM_STATES 8
#define NUM_ BUTTERFLIES 4
2a#define THR BITS PER BUTT 8
#define RX MASK 0x3;
26#define LAST STAGE (CONV_SIZE-1)
#define INIT STAGE 0
2s#tdefine INIT STATE 0

30 // Type definitions
//typedef unsigned char byte;
32 typedef struct State {
int prev|[2];

34 unsigned int recBit;
int tbPos;

:m} State;

38 // Global variables

State stateVect [NUM_STATES];
10

long long int VIT METRICO;
i2long long int VIT METRICI;

int MAX STATE;
44

// Function Prototypes

void convolutionallnit (void);
isunsigned long long int convEncoder (unsigned int);

//int convDecoder (unsigned long long int,
50 // unsigned int [],

unsigned int [],

52 // int *state index);

int convDecoder (unsigned long long int);
sasunsigned int viterbiTraceBack (unsigned int THR[TOT INPUT BITS|, State stateVect [NUM_STATES|, int =x

state index);

int calcMaxState(long long int VIT METRICO,long long int VIT METRICI);

Listing 3: dspCode/convolutional.h

103

1
#include "convolutional.h"

s#include <stdio.h>

sunsigned long long convEncoder(unsigned int input){
// Code for generator polynomials 0 — {1,0,0,1} and 1 — {1,1,1,1} {s3 s2 sl u}]
7 // Encoder outputs MSB to the RHS of the output word. This is the first Tx’ed bit
// and is according to the Little Endian convention, to fit the TS201 architecture.
9 // Encoder will take 744+24 input bits to produce 1488+48 output bits
// The excess 16 bits are non—data and serve to return the encoder to its
11 // initial conditions to prevent any enormous bit errors propagating through

// the remaining trellis structure in the decoder.

s //
// CONVOLUTIONAL CODER TOPOLOGY

s // — I I+ I+ -+ >> 1
// (I \ | |

/) [| | |
// u———>——| S3 |-——| S2 |———] S1 |——

v // | | | | |
// [\ | |

21 // [+ [+ >> 0
//
int i;

25 unsigned long int dell, del2, del3;
unsigned long int output|RATE];

27 unsigned long long int combined output;
static long int state=0;

29
// Setup encoder state

31 state = state ~(input << 3);

33 // Setup additive encoder terms
dell = state >> 1;

35 del2 = dell >> 1;
del3 = del2 >> 1;

// See document explaining this shift—add
30 output[0] = state~del3;

output [1] = output|[0]~ del2~dell;
41

// Mask out the valid range of the addition.
13 output [0] = output[0]& (0 xffffff);
output[1]& (0 xffffff);

output [1]

asm (

a7 "XR2 = %1;;"

104

int convDecoder (unsigned long long int

614

63

65

69

81

"XR3 = %2;;"
"THRI1:0 R3:2
"%0 = THR1:0;;"

(L);5"

"=x1" (combined output)
"x" (output[0]), "x" (output[1])
"XR2" ”XR,S") .

Update the encoder state

state >> BITS_IN_INPUT;

state =

return combined output;

input)

long branchMetricTable [NUM_BUTTERFLIES| = {0xff0000ff ,0x00010100,0x00ffff00 ,0x01000001 };//for

00, 01, 10, 11
int i, j;
int rx_bits;

__builtin _quad res;

int vit_output;

unsigned long long int vit_ input = input;
unsigned long long int tb_hist;

static int tb_out_offset = 0;
static int stage=0;
int decoded bit;
unsigned
unsigned int tb_mem ping[TOT INPUT BITS];

unsigned int tb_mem _pong|[TOT_ INPUT_BITS];

int *xtemp;
static
static
static int xstate;

static unsigned int *TB_PING = tb_mem ping, #IB PONG = tb_mem pong;
// Initialise the path metric.
if (stage=INIT STAGE) {
VIT METRICO = 0x0000000000000000 ;
VIT METRIC1 = 0x0000000000000000 ;
temp = TB_PING;
TB_PING = TB_PONG;
TB_PONG = temp;
to 0 since the data flush is known to have occured.

// Reset the state of viterbi

(xstate) = INIT STATE;

}

// Fill
for (i=0;i<BITS IN INPUT; i++){

vit _input & RX MASK;

__acs_max_8s(VIT METRICO,VIT METRICI, branchMetricTable[rx bits]|,0x0,res ,tb hist);
TB PONG|[tb out offset] = (unsigned int)(tbh hist >> 56);

VIT_METRICI = _ _builtin_high_64(res);

up the Trellis History Registers for calculation during the traceback

rx_bits =

105

95 VIT METRICO = _ builtin_low_64(res);
vit _input = vit_input >> 2;
o7 tb_out offset = (tb_out_offset+1)%TOT_INPUT_ BITS;

99

101 //TraceBack
vit _output = viterbiTraceBack (TB_PING, stateVect ,state);
103
Determine the state with the maximum path metric.
s if (stage == LAST STAGE) {
(*state) = calcMaxState (VIT METRICO,VIT METRIC1) ;

wr)
stage = (stage+1)%CONV_SIZE;
0o return vit_output;
}

int calcMaxState(long long int VIT METRICO, long long int VIT METRIC1){
113 short max_state;
int state index=0;

115 max_state = (VIT_METRIC1 >> 48) & Oxffff;//state0

17 1f (((VIT_METRIC1 >> 32)&0xffff) > max_ state){//stated
max_state = (VIT_METRIC1 >> 32)&0x{fff;
119 state index = 4;
}
121 if (((VIT_METRIC1 >> 16)&0xffff) > max state){//state2
max_state = (VIT_METRIC1 >> 16)&0xffff;
123 state index = 2;
}
125 if ((VIT_METRICI&Ox ffff) > max state){//state6
max_state = (VIT METRIC1&0xff)&O0xffff ;
127 state index = 6;
}
120 if (((VIT_METRIC1 >> 48)&0xffff) > max state){//statel
max_state = (VIT_METRIC1 >> 48)&0xffff;
131 state index = 1;
}
133 if (((VIT_METRIC1 >> 32)&0xffff) > max state){//state5’
max_state = (VIT METRIC1 >> 32)&0xffff;
135 state__index = 5;
}
is7 if (((VIT_METRIC1 >> 16)&0xffff) > max state){//state3
max_state = (VIT _METRIC1 >> 16)&0x{fff;
139 state index = 3;
}
a1 if (((VIT_METRIC1)&O0x ffff) > max state){//state7
max_state = (VIT METRIC1&Oxffff);

106

143 state__index = 7;

}

a5 return state index;

void convolutionallnit (void){
140 int i

for (i=0;i<NUM_STATES/2;i++){

151 // Generate the dependencies to previous states
stateVect [i].prev[0] = ((i<<1)"0x0)&0x7;
153 stateVect [i].prev[l] = ((i<<1)"0x1)&0x7;
155 // Generate the receive bits under traceback to either preceding state. This

// 1is generated by traversing down the RHS of the Viterbi diagram and observing
157 // the output produced under branching. There is only one possible recBit for any
// given state.

159 stateVect[i].recBit = 0;

161

for (i=NUM_STATES/2;i<NUM_STATES; i++){

163 // Generate the dependencies to previous states
stateVect [i].prev[0] = ((i<<1)"0x0)&0x7;
165 stateVect [i].prev|[1] = ((i<<1)"0x1)&0x7;
167 // Generate the receive bits under traceback to either preceding state. This
// is generated by traversing down the RHS of the Viterbi diagram and observing
169 // the output produced under branching. There is only one possible recBit for any
// given state.
171 stateVect[i].recBit = 1;

}

173 stateVect [0].tbPos =
stateVect [4].tbPos =
stateVect [2].thPos =
stateVect [6].thPos =
177 stateVect [1].tbPos =

~
o

stateVect [5]. thPos =

170 stateVect [3].tbPos =
stateVect [7].tbPos =

S = N W e o O

153 unsigned int viterbiTraceBack (unsigned int THR[TOT INPUT BITS|, State stateVect[NUM STATES|, int =
state index){
static int tb_in offset = 0;
185 unsigned int vit_output, tb_bit;

int i;

vit _output = 0;
iso for (i=0;i<BITS IN INPUT; i++){

107

vit _output = vit_ output << 1;
191 vit _output = (vit_output) ~(stateVect[(*state index)].recBit);
tb_bit = (THR[TOT INPUT BITS-1-tb in offset]| >> (stateVect[(*state index)].tbPos)) & 0xl;
193 (xstate index) = stateVect|[(*state index)|.prev|[tb_ bit];
tb_in_ offset = (tb_in_ offset+1)%TOT INPUT BITS;
//printf("bye ",i);

197 return vit_output;

Listing 4: dspCode/convolutional.c

1#include "cyclic prefix.h"

#include <stdio.h>

3

void cp_insert(float ifft_output [IFFT_OUTPUT_SIZE|, float ifft output_cp [NUM_CP]) {

5 int i;
for(i = 0; i<NUM_CP; i++){

7 ifft _output cp[i]| = ifft output|[i + (IFFT_OUTPUT_SIZENUM CP)|; // copy the last 16 sample

o}

11 void cp_remove(float received [IFFT OUTPUT_ SIZEANUM CP], float output [I[FFT OUTPUT SIZE]) {
int i,j=0;
s for (i=NUM_CP;i<(NUM_CPHFFT OUTPUT SIZE);i++){
output|[j|=received|[i];

15 i+t

Listing 5: dspCode/cyclic_ prefix.c

1#include "input.h"

svoid cp insert(float (%), float (x));
void cp_remove(float received [IFFT_OUTPUT_ SIZEANUM CP], float output [I[FFT_OUTPUT_SIZE]) ;

Listing 6: dspCode/cyclic_ prefix.h

[]k sk s sk ok ks sk ok ok K s sk sk ok ok ok sk ok KK S sk ok KK K ok sk oK K ok sk kK K sk ok KK 3 sk ok K sk sk KK K ok ok ok K K K ok ok ok Kk o
2// Defines for the FFT routines for TigerSHARC family of processors
FFTDef. h

108

o#if ldefined (_ FFTDEF H)
#define FFIDEF H
8
[o ko ko ok ko koK ok ok KRR Rk kR koo IVIAICTOS ok ok o ok ok ok ok ok ok ok ok sk ok ok ok ok o ok Kok o ok o Kk
10
#define mPUSHQ(arg) \
12 Q[k27 4+= —4] = arg;;

1i#tdefine mPOPQ(arg) \
k27 = k27 + 4;; \
16 arg = Q[k27 += 0];;

1s#define mENTER \
§26 = j27 — 0x40; k26 = k27 — 0x40;; \
20 [j27 4= OxFFFFFFF4] = ¢JMP; k27 = k27 — 0x04;;

22#+define mRETURN \
cjmp — [j26 + 0x40]35 \
24 ¢jmp (ABS) (NP); j27:24 = Q[j26 + 0x44]; k27:24 = Q[k26 + 0x44];;

26
[/ s kot ok sk sk sk ok sk sk ok sk ok ok sk sk sk ok s ok sk ok ok sk ok sk ok Rk sk ok ok ok sk ok sk ok sk sk sk ok ok R sk ok skok sk sk sk ok ok R sk ok sk ok ok sk ok ok o ok
28 /*here N and the fft type must be defined.
—N represents the number of input points of the fft, either real or complex
30—The fft type may be real and then FFT real must be defined or
complex and then FFT real definition must be commented
s2—In real FFT case, N may be 64, 128, ..., 32768 for TS201 and 64, 128,...,
—In complex FFT case, N may be 32, 64, ..., 16384 for TS201 and 32, 64,...,

4096 for TS101

sa—for all other cases, an error message is shown on the screen after the project

*/
36
#define N 64 // Complex FFT size
3s //#define FFT Real
] %% o ok ok o ok ok o ok kKR KKK KKK R R R R KRR R R R R ok oK R R K K oK K KKK KKK R R R R R R R o R R R R R R

40

#if N==32
42 #ifdef FFT_ Real
#define initialization error
44 #define MAX_FFT_SIZE 16384
#define outbuff size 16384
46 #else
#define MAX FFT SIZE 32
48 #define outbuff size 64
#endif

softelif N==64
#define MAX FFT_SIZE 64
52 #ifdef FFT_Real
#define outbuff size 64

109

54 #else
#define outbuff size 128
56 #endif
#elif N==128
58 #define MAX_FFT SIZE 128
#ifdef FFT Real
60 #define outbuff size 128
#else
62 #define outbuff size 256
#endif
ca#telif N==256
#define MAX FFT SIZE 256
66 #ifdef FFT Real
#define outbuff size 256
68 #else
#define outbuff size 512
70 #endif
#elif N==512
72 #define MAX_FFT SIZE 512
#ifdef FFT_Real
74 #define outbuff size 512
#else
76 #define outbuff size 1024
#endif
w#elif N==1024
#define MAX_FFT SIZE 1024

80 #ifdef FFT_Real
#define outbuff size 1024
82 #else

#define outbuff size 2048
84 #endif
#elif N==2048
86 #define MAX FFT SIZE 2048
#ifdef FFT Real
88 #define outbuff size 2048
#else
90 #define outbuff size 4096
#endif
oo#telif N==4096
#define MAX FFT SIZE 4096
94 #ifdef FFT_Real
#define outbuff_ size 4096
96 #else
#define outbuff size 8192
98 #endif
#elif N==8192
100 #ifdef FFT Real
#define MAX FFT SIZE 8192

110

102 #define outbuff size 8192

#else
104 #ifdef _ ADSPTS201
#define MAX FFT SIZE 8192
106 #define outbuff size 16384
#else
108 #define initialization error
#define outbuff size 8192
110 #define MAX FFT SIZE 8192
#endif
112 #endif

#elif N==16384
114 #ifdef __ ADSPTS201_
#define MAX FFT_SIZE 16384
116 #ifdef FFT_Real
#define outbuff size 16384

118 #else
#define outbuff size 32768
120 #endif
#else
122 #define initialization error
#define outbuff size 8192
124 #define MAX FFT SIZE 8192
#endif

o#telif N==32768
#ifdef _ ADSPTS201

128 #ifdef FFT_Real
#define MAX FFT_SIZE 32768
130 #define outbuff size 32768
#else

132 #define initialization error
#define outbuff size 8192
134 #define MAX FFT SIZE 8192

#endif
136 #else
#define initialization error
138 #define outbuff size 16384
#define MAX FFT SIZE 16384
140 #endif
#else

142 #define initialization error
#define MAX FFT SIZE 8192
144 #define outbuff size 8192

#endif
146

#define REAL 0
1as#+define COMPLEX 1

111

iso#endif // FFTDEF H

Listing 7: dspCode/FFTDef.h

6

10

12

14

16

18

20

22

24

26

28

30

34

36

40

42

fft32 .asm

Prelim rev. October 19, 2003 — BL
Rev. 1.0 — added real inputs case — PM

This is assembly routine for the Complex radix—2 C—callable FFT on TigerSHARC
family of DSPs.

I. Description of Calling.

1. Inputs:
j4 —> input (ping—pong buffer 1)
j5 —> ping—pong buffer 1
j6 —> ping—pong buffer 2
j7 —> output
j2740x18 —> N = Number of points
j2740x19 —> REAL or COMPLEX

2. C-Calling Example:

fft32 (&(input), &(ping pong bufferl), &(ping pong buffer2), &(output), N, COMPLEX) ;

3. Limitations:
All buffers must be aligned on memory boundary which is a multiple of 4.
b. N must be between 32 and MAX_ FFT_SIZE.
c. If memory space savings are required and input does not have to be
preserved , ping pong bufferl can be the same buffer as input.
d. If memory space savings are required , output can be the same buffer
as ping pong buffer2 if the number of FFT stages is even (i.e.
Log2(N) is even) or the same as ping pong bufferl if the number of
FFT stages is odd (i.e. Log2(N) is odd).

4. MAX FFT SIZE can be selected via #define. Larger values allow for more choices
of N, but its twiddles will occupy more memory.

5. This C — callable function can process up to 64K blocks of data on TS201
(16K blocks on TS101) because C environment itself necessitates memory.
Therefore, if more input points are necessary, assembly language development
may become a must. On TS201, a block of memory is 128K words long, so
maximum N is 128K real points or 64K complex points. TS101 contains
only 2 blocks of data memory of 64K words and 4 buffers must be

accommodated. Therefore, maximum N is 32K real words or 16K complex words.

II. Description of the FFT algorithm.

112

44
1. The input data is treated as complex interleaved N—point.
46 2. Due to re—ordering, no stage can be done in—place.
3. The bit reversal and the first two stages are combined into
48 a single loop. This loop takes data from input and stores it
in the ping—pong bufferl.
50 4. Each subsequent stage ping—pongs the data between the two ping—pong
buffers. The last stage uses FFT output buffer for its output.

52 5. Although the FFT is designed to be called with any point size
N <= MAX FFT SIZE by subsampling the twiddle factors, for ADSP-TS20x
54 processors , the best cycle optimization is achieved when MAX FFT SIZE=N.

For ADSP-TS101 all choices of MAX FFT SIZE are equally optimal.

56

58 III. Description of the REAL FFT algorithm.

60 1. The input data is treated as complex interleaved N/2—point. The N/2 point complex
FFT will be computed first. Thus, N is halved, now number of points = N/2.
62
2. Details and source code of the N/2 point complex FFT are in II above.
64
3. Real re—combine:
66 Here the complex N/2—point FFT computed in the previous steps is recombined to

produce the N—point real FFT. If G is the complex FFT and F is the real FFT,

68 the formula for F is given by:

70 F(n) = 0.5%(G(n)+conj(G(N/2—n)) —0.5%i*exp(—2*«pi*xi*n/N)*(G(n)—conj(G(N/2—n)).

72 From this the following can be derived:

74 conj(F(N/2—n)) = 0.5%(G(n)+conj(G(N/2—n))+0.5*%i*exp(—2+pixi*n/N)x(G(n)—conj(G(N/2—n)).
76 Thus, this can be computed in (n,N/2—n) pairs, as follows (dropping factor of 2):

78 G(n) > F(n)

\ +/ \ +/
80 \/ \/
/\ /\
82 conj / =\ exp(—2pixi*n)=xi / =\ conj
G(N/2—n) > conj (G(N/2—n)) > F(N/2—n)

84
This is very efficient on the TigerSHARC architecture due to the add/subtract

86 instruction .
88

IV. For all additional details regarding this algorithm and code, see EE—218

90 application note, available from the ADI web site.

113

92 %/

[/ s ko ok sk sk sk sk ok ok sk ok skok ok k sk ok skt ok kkok ko okokoskokokkokok TILCTUA @S stk ks sk sk skt ok sk sk sk sk ok ok sk sk ok sk ok ok sk sk ok sk ok ok ok sk ok ok ok K
94

#include "FFTDef.h"
ss#include "defts201.h"

98 /[sk sk sk skok kR KRR KRR SRR KRRk Rk TUX B ETILS ok skt s sk ok o sk ok o sk ok ok sk ok ok sk ok o Sk oK oK KoK KoK KoK KoK Ok

100 .extern _ twiddles;

102/ /o s % % sk ok ok o ok % ok okok sk ok ok okokok Rk ok okokok sk okkokokok ok ok VL RROUBITIE %k sk ok ok ok 3k ok ok ok ok o o ok ok ok ok ok ok ok ok o ok ok ok ok ok o % %k
.section program;

104 . global FFT32;

o6 FFT32:

108/ / sk sk skt s skt ok sk ok ok sk sk ok sk ok ok skosk ok skok ok skokokokokokkokokokok . PTOLOZUE skt skosk ok sk sk ok sk skt s sk ok ok sk sk ok sk sk ok sk sk ok sk ok ok ok ok ok sk ok ok ok

110 mENTER
mPUSHQ(j19:16)

112 mPUSHQ(xR31:28)
mPUSHQ(xR27:24)

i1+ mPUSHQ(yR31:28)
mPUSHQ(yR27:24)

116

//************************************ Setllp k3K 3k sk 3k ok ok sk sk sk ok sk ok ok Sk ok ok ok ok ok ok kK kK Sk Sk R R sk ok ok ok ok ok ok ok

e J1T = [j27 + 0x18];; //jl7T = N
j11 = [j27 + 0x19];; // jl11=COMPLEX or REAL, off the stack
120
comp(j11 ,COMPLEX) ;